{"title":"On the h-measure of an exceptional set in Fenton-type theorem for Taylor-Dirichlet series","authors":"Andrii Bodnarchuk, Yu.M. Gal', O. Skaskiv","doi":"10.30970/ms.61.1.109-112","DOIUrl":null,"url":null,"abstract":"We consider the class $S(\\lambda,\\beta,\\tau)$ of convergent for all $x\\ge0$ \nTaylor-Dirichlet type series of the form \n$$F(x) =\\sum_{n=0}^{+\\infty}{b_ne^{x\\lambda_n+\\tau(x)\\beta_n}},\\ \nb_n\\geq 0\\ (n\\geq 0),$$ \n where $\\tau\\colon [0,+\\infty)\\to \n(0,+\\infty)$\\ is a continuously differentiable non-decreasing function, \n$\\lambda=(\\lambda_n)$ and $\\beta=(\\beta_n)$ are such that $\\lambda_n\\geq 0, \\beta_n\\geq 0$ $(n\\geq 0)$. \nIn the paper we give a partial answer to a question formulated by Salo T.M., Skaskiv O.B., Trusevych O.M. on International conference ``Complex Analysis and Related Topics'' (Lviv, September 23-28, 2013) ([2]). We prove the following statement: For each increasing function $h(x)\\colon [0,+\\infty)\\to (0,+\\infty)$, $h'(x)\\nearrow +\\infty$ $ (x\\to +\\infty)$, every sequence $\\lambda=(\\lambda_n)$ such that \n$\\displaystyle\\sum_{n=0}^{+\\infty}\\frac1{\\lambda_{n+1}-\\lambda_n}<+\\infty$ \nand for any non-decreasing sequence $\\beta=(\\beta_n)$ such that \n$\\beta_{n+1}-\\beta_n\\le\\lambda_{n+1}-\\lambda_n$ $(n\\geq 0)$ \nthere exist a function $\\tau(x)$ such that $\\tau'(x)\\ge 1$ $(x\\geq x_0)$, a function $F\\in S(\\alpha, \\beta, \\tau)$, a set $E$ and a constant $d>0$ such that $h-\\mathop{meas} E:=\\int_E dh(x)=+\\infty$ and $(\\forall x\\in E)\\colon\\ F(x)>(1+d)\\mu(x,F),$ where $\\mu(x,F)=\\max\\{|a_n|e^{x\\lambda_n+\\tau(x)\\beta_n}\\colon n\\ge 0\\}$ is \nthe maximal term of the series. \n \nAt the same time, we also pose some open questions and formulate one conjecture.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.109-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the class $S(\lambda,\beta,\tau)$ of convergent for all $x\ge0$
Taylor-Dirichlet type series of the form
$$F(x) =\sum_{n=0}^{+\infty}{b_ne^{x\lambda_n+\tau(x)\beta_n}},\
b_n\geq 0\ (n\geq 0),$$
where $\tau\colon [0,+\infty)\to
(0,+\infty)$\ is a continuously differentiable non-decreasing function,
$\lambda=(\lambda_n)$ and $\beta=(\beta_n)$ are such that $\lambda_n\geq 0, \beta_n\geq 0$ $(n\geq 0)$.
In the paper we give a partial answer to a question formulated by Salo T.M., Skaskiv O.B., Trusevych O.M. on International conference ``Complex Analysis and Related Topics'' (Lviv, September 23-28, 2013) ([2]). We prove the following statement: For each increasing function $h(x)\colon [0,+\infty)\to (0,+\infty)$, $h'(x)\nearrow +\infty$ $ (x\to +\infty)$, every sequence $\lambda=(\lambda_n)$ such that
$\displaystyle\sum_{n=0}^{+\infty}\frac1{\lambda_{n+1}-\lambda_n}<+\infty$
and for any non-decreasing sequence $\beta=(\beta_n)$ such that
$\beta_{n+1}-\beta_n\le\lambda_{n+1}-\lambda_n$ $(n\geq 0)$
there exist a function $\tau(x)$ such that $\tau'(x)\ge 1$ $(x\geq x_0)$, a function $F\in S(\alpha, \beta, \tau)$, a set $E$ and a constant $d>0$ such that $h-\mathop{meas} E:=\int_E dh(x)=+\infty$ and $(\forall x\in E)\colon\ F(x)>(1+d)\mu(x,F),$ where $\mu(x,F)=\max\{|a_n|e^{x\lambda_n+\tau(x)\beta_n}\colon n\ge 0\}$ is
the maximal term of the series.
At the same time, we also pose some open questions and formulate one conjecture.