High Order Continuous Extended Linear Multistep Methods for Approximating System of ODEs

I. M. Esuabana, S. E. Ogunfeyitimi
{"title":"High Order Continuous Extended Linear Multistep Methods for Approximating System of ODEs","authors":"I. M. Esuabana, S. E. Ogunfeyitimi","doi":"10.34198/ejms.14324.501533","DOIUrl":null,"url":null,"abstract":"A class of high-order continuous extended linear multistep methods (HOCELMs) is proposed for solving systems of ordinary differential equations (ODEs). These continuous schemes are obtained through multistep collocation at various points to create a single block method with higher dimensions. This class of schemes consists of A-stable methods with a maximum order of $p\\leq14$, capable of yielding moderately accurate results for equations with several eigenvalues of the Jacobians located close to the imaginary axis. The results obtained from numerical experiments indicate that these schemes show great promise and competitiveness when compared to existing methods in the literature.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"43 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.34198/ejms.14324.501533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A class of high-order continuous extended linear multistep methods (HOCELMs) is proposed for solving systems of ordinary differential equations (ODEs). These continuous schemes are obtained through multistep collocation at various points to create a single block method with higher dimensions. This class of schemes consists of A-stable methods with a maximum order of $p\leq14$, capable of yielding moderately accurate results for equations with several eigenvalues of the Jacobians located close to the imaginary axis. The results obtained from numerical experiments indicate that these schemes show great promise and competitiveness when compared to existing methods in the literature.
用于逼近 ODEs 系统的高阶连续扩展线性多步骤方法
本文提出了一类用于求解常微分方程(ODE)系统的高阶连续扩展线性多步法(HOCELM)。这些连续方案是通过在不同点上进行多步配位来创建具有更高维的单块方法。这一类方案由最大阶数为 $p\leq14$ 的 A 稳定方法组成,能够为雅各布的几个特征值位于虚轴附近的方程提供中等精度的结果。数值实验结果表明,与文献中的现有方法相比,这些方法显示出巨大的潜力和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信