Optical Solitons with Dispersive Concatenation Model Having Multiplicative White Noise by the Enhanced Direct Algebraic Method

A. H. Arnous, A. Biswas, Y. Yıldırım, A. Alshomrani
{"title":"Optical Solitons with Dispersive Concatenation Model Having Multiplicative White Noise by the Enhanced Direct Algebraic Method","authors":"A. H. Arnous, A. Biswas, Y. Yıldırım, A. Alshomrani","doi":"10.37256/cm.5220244123","DOIUrl":null,"url":null,"abstract":"This paper investigates the significance of the dispersive concatenation model, incorporating the Kerr law of self-phase modulation in the presence of white noise. Our methodology relies on the enhanced direct algebraic method for integration. We reveal that intermediate solutions are expressed in terms of Jacobi's elliptic functions, leading to soliton solutions as the modulus of ellipticity approaches unity. This discovery culminates in the emergence of a diverse range of optical solitons. Our findings contribute novelty to the existing literature by offering insights into the behavior of optical solitons within the dispersive concatenation model, presenting a significant advancement in understanding this complex phenomenon.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5220244123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the significance of the dispersive concatenation model, incorporating the Kerr law of self-phase modulation in the presence of white noise. Our methodology relies on the enhanced direct algebraic method for integration. We reveal that intermediate solutions are expressed in terms of Jacobi's elliptic functions, leading to soliton solutions as the modulus of ellipticity approaches unity. This discovery culminates in the emergence of a diverse range of optical solitons. Our findings contribute novelty to the existing literature by offering insights into the behavior of optical solitons within the dispersive concatenation model, presenting a significant advancement in understanding this complex phenomenon.
用增强直接代数法研究具有乘法白噪声的分散协集模型的光学孤子
本文研究了色散串联模型的意义,并结合了白噪声存在时的自相位调制克尔定律。我们的方法依赖于增强的直接代数积分法。我们发现,中间解可以用雅各比椭圆函数来表示,当椭圆度模数接近一的时候,就会产生孤子解。这一发现最终导致了各种光学孤子的出现。我们的研究结果为现有文献提供了新颖性,深入揭示了色散串联模型中光孤子的行为,在理解这一复杂现象方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信