Properties of low-resistivity molybdenum metal thin film deposited by atomic layer deposition using MoO2Cl2 as precursor

So Young Kim, Chunghee Jo, Hyerin Shin, D. Yoon, D. Shin, Min-ho Cheon, Kyu-beom Lee, D. Seo, Jae-wook Choi, Heungsoo Park, Dae-Hong Ko
{"title":"Properties of low-resistivity molybdenum metal thin film deposited by atomic layer deposition using MoO2Cl2 as precursor","authors":"So Young Kim, Chunghee Jo, Hyerin Shin, D. Yoon, D. Shin, Min-ho Cheon, Kyu-beom Lee, D. Seo, Jae-wook Choi, Heungsoo Park, Dae-Hong Ko","doi":"10.1116/6.0003361","DOIUrl":null,"url":null,"abstract":"Challenges have arisen in selecting suitable candidates for interconnects and metal contacts due to the exponential increase in metal resistivity at scaled pitches. Molybdenum (Mo) has emerged as a promising alternative to the traditional metals such as copper or tungsten owing to its low electrical resistivity and electron mean free path. In this study, we investigated the formation of a molybdenum film grown by thermal atomic layer deposition (ALD) using a MoO2Cl2 solid precursor and H2 and NH3 gases as the reducing agents. A molybdenum nitride film served as the seed layer on a SiO2 substrate before molybdenum film deposition. The analysis focused on the film's phase, morphology, chemical bonding states, and resistivity across various thicknesses. X-ray diffraction (XRD) confirmed the presence of polycrystalline BCC planes. Our analyses confirmed the successful growth of the molybdenum metal thin film, which, at a thickness of 10 nm, exhibited a record-low resistivity of approximately 13 μΩ cm.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"52 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges have arisen in selecting suitable candidates for interconnects and metal contacts due to the exponential increase in metal resistivity at scaled pitches. Molybdenum (Mo) has emerged as a promising alternative to the traditional metals such as copper or tungsten owing to its low electrical resistivity and electron mean free path. In this study, we investigated the formation of a molybdenum film grown by thermal atomic layer deposition (ALD) using a MoO2Cl2 solid precursor and H2 and NH3 gases as the reducing agents. A molybdenum nitride film served as the seed layer on a SiO2 substrate before molybdenum film deposition. The analysis focused on the film's phase, morphology, chemical bonding states, and resistivity across various thicknesses. X-ray diffraction (XRD) confirmed the presence of polycrystalline BCC planes. Our analyses confirmed the successful growth of the molybdenum metal thin film, which, at a thickness of 10 nm, exhibited a record-low resistivity of approximately 13 μΩ cm.
以二氧化钼(MoO2Cl2)为前驱体,通过原子层沉积法沉积的低电阻率钼金属薄膜的特性
由于金属电阻率在按比例调整间距时呈指数级增长,因此在为互连器件和金属触点选择合适的候选材料时遇到了挑战。钼(Mo)因其低电阻率和电子平均自由路径,已成为铜或钨等传统金属的理想替代品。在这项研究中,我们研究了使用二氧化钼(MoO2Cl2)固体前驱体以及 H2 和 NH3 气体作为还原剂,通过热原子层沉积(ALD)技术形成的钼薄膜。在钼薄膜沉积之前,在二氧化硅基底上以氮化钼薄膜作为种子层。分析的重点是不同厚度薄膜的相位、形态、化学键状态和电阻率。X 射线衍射 (XRD) 证实了多晶 BCC 平面的存在。我们的分析证实了金属钼薄膜的成功生长,其厚度为 10 纳米时的电阻率约为 13 μΩ cm,创历史新低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信