CONTRIBUTION TO THE AUTHENTICITY OF DIGITIZED HANDWRITTEN SIGNATURES THROUGH DEEP LEARNING WITH RESNET-50 AND OCR

Novateur Publications, Tsanta Christelle, Nadège Ralaibozaka, Maminiaina Alphonse Rafidison, Hajasoa Malalatiana Ramafiarisona
{"title":"CONTRIBUTION TO THE AUTHENTICITY OF DIGITIZED HANDWRITTEN SIGNATURES THROUGH DEEP LEARNING WITH RESNET-50 AND OCR","authors":"Novateur Publications, Tsanta Christelle, Nadège Ralaibozaka, Maminiaina Alphonse Rafidison, Hajasoa Malalatiana Ramafiarisona","doi":"10.26662/ijiert.v11i3.pp20-25","DOIUrl":null,"url":null,"abstract":"This paper explores the contribution of authenticity to digitized handwritten signatures using a deep learning-based approach, implementing ResNet-50 and optical character recognition (OCR). Signature authentication is a crucial issue in various fields, such as transaction security, protection of official documents, and fraud prevention. Our approach aims to improve the reliability of signature verification systems by exploiting the advanced capabilities of deep neural networks. Experimental results demonstrate a high authentication accuracy of 94% on our collected database and 100% on ICDAR 2011, validating the effectiveness of the proposed approach. The advantages of this method include more excellent resistance to circumvention techniques, adaptability to different signature styles, and robustness against intentional tampering.","PeriodicalId":517765,"journal":{"name":"International Journal of Innovations in Engineering Research and Technology","volume":"67 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovations in Engineering Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26662/ijiert.v11i3.pp20-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the contribution of authenticity to digitized handwritten signatures using a deep learning-based approach, implementing ResNet-50 and optical character recognition (OCR). Signature authentication is a crucial issue in various fields, such as transaction security, protection of official documents, and fraud prevention. Our approach aims to improve the reliability of signature verification systems by exploiting the advanced capabilities of deep neural networks. Experimental results demonstrate a high authentication accuracy of 94% on our collected database and 100% on ICDAR 2011, validating the effectiveness of the proposed approach. The advantages of this method include more excellent resistance to circumvention techniques, adaptability to different signature styles, and robustness against intentional tampering.
通过使用 resnet-50 和 OCR 进行深度学习提高数字化手写签名的真实性
本文采用基于深度学习的方法,实施 ResNet-50 和光学字符识别 (OCR),探讨了真实性对数字化手写签名的贡献。签名验证是交易安全、官方文件保护和欺诈防范等多个领域的关键问题。我们的方法旨在利用深度神经网络的先进功能,提高签名验证系统的可靠性。实验结果表明,在我们收集的数据库中,认证准确率高达 94%,而在 2011 年 ICDAR 上,认证准确率为 100%,验证了所提方法的有效性。这种方法的优点包括:对规避技术有更出色的抵御能力、对不同签名风格的适应性以及对故意篡改的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信