Bounds for Weierstrass Elliptic Function and Jacobi Elliptic Integrals of First and Second Kinds

S. E. Uwamusi
{"title":"Bounds for Weierstrass Elliptic Function and Jacobi Elliptic Integrals of First and Second Kinds","authors":"S. E. Uwamusi","doi":"10.34198/ejms.14324.535564","DOIUrl":null,"url":null,"abstract":"The Weierstrass elliptic function is presented in connection with the Jacobi elliptic integrals of first and second kinds leading to comparing coefficients appearing in the Laurent series expansion with those of Eisenstein series for the cubic polynomial in the meromorphic Weierstrass function.\n\nIt is unified in the formulation the Weierstrass elliptic function with Jacobi elliptic integral by considering motion of a unit mass particle in a cubic potential in terms of bounded and unbounded velocities and the time of flight with imaginary part in the complex function playing a major role. Numerical tools box used are the Konrad-Gauss quadrature and Runge-Kutta fourth order method.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.34198/ejms.14324.535564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Weierstrass elliptic function is presented in connection with the Jacobi elliptic integrals of first and second kinds leading to comparing coefficients appearing in the Laurent series expansion with those of Eisenstein series for the cubic polynomial in the meromorphic Weierstrass function. It is unified in the formulation the Weierstrass elliptic function with Jacobi elliptic integral by considering motion of a unit mass particle in a cubic potential in terms of bounded and unbounded velocities and the time of flight with imaginary part in the complex function playing a major role. Numerical tools box used are the Konrad-Gauss quadrature and Runge-Kutta fourth order method.
魏尔斯特拉斯椭圆函数和雅可比第一和第二类椭圆积分的界限
将魏尔斯特拉斯椭圆函数与雅可比椭圆第一和第二种积分联系起来进行介绍,从而比较了洛朗级数展开中出现的系数与魏尔斯特拉斯椭圆函数的三次多项式的爱森斯坦级数中出现的系数。通过考虑单位质量粒子在立方势中的有界和无界速度运动以及飞行时间(复变函数中的虚部起主要作用),将魏尔斯特拉斯椭圆函数与雅可比椭圆积分统一起来。使用的数值工具箱是 Konrad-Gauss 正交法和 Runge-Kutta 四阶法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信