ULASAN SISTEMATIK KEATAS PENGAPLIKASIAN BIOPENDERIA BERASASKAN PERENCATAN ENZIM SEBAGAI KAEDAH SARINGAN AWAL UNTUK PEMANTAUAN ALAM SEKITAR DAN KESELAMATAN MAKANANEMANTAUAN ALAM SEKITAR DAN KESELAMATAN MAKANAN

M. K. Sabullah, R. Abdullah, Roslina Jawan, Lucky Goh Poh Wah, Hartinie Marbawi, Syed Umar Faruq Syed Najmuddin, Jualang Azlan Gansau, Mohd Yunus Syukor
{"title":"ULASAN SISTEMATIK KEATAS PENGAPLIKASIAN BIOPENDERIA BERASASKAN PERENCATAN ENZIM SEBAGAI KAEDAH SARINGAN AWAL UNTUK PEMANTAUAN ALAM SEKITAR DAN KESELAMATAN MAKANANEMANTAUAN ALAM SEKITAR DAN KESELAMATAN MAKANAN","authors":"M. K. Sabullah, R. Abdullah, Roslina Jawan, Lucky Goh Poh Wah, Hartinie Marbawi, Syed Umar Faruq Syed Najmuddin, Jualang Azlan Gansau, Mohd Yunus Syukor","doi":"10.11113/jurnalteknologi.v86.20579","DOIUrl":null,"url":null,"abstract":"\n\n\n\nIn this article, the latest discoveries in the development of biosensors based on enzyme inhibition are reviewed. Due to their excellent selectivity and sensitivity, they represent a significant alternative method to conventional analytical methods; which is a method of analysis that only relies on the generation of instrumentation data without any preliminary screening. Basically, biosensors are able to convert biological activity into a quantifiable signal. These enzyme inhibition-based biosensors have a wide range of applications in the fields of environmental safety, food safety, and clinical analysis since toxic substances containing heavy metals and pesticides are the most effective inhibitors of enzymes. This paper is aimed at exploring the methods used and the sensitivity to various inhibitors for biosensors based on the inhibition of enzymes such as glucose oxidase, urease, tyrosinase, cholinesterase, and other enzymes.\n\n\n\n","PeriodicalId":55763,"journal":{"name":"Jurnal Teknologi","volume":"16 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v86.20579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the latest discoveries in the development of biosensors based on enzyme inhibition are reviewed. Due to their excellent selectivity and sensitivity, they represent a significant alternative method to conventional analytical methods; which is a method of analysis that only relies on the generation of instrumentation data without any preliminary screening. Basically, biosensors are able to convert biological activity into a quantifiable signal. These enzyme inhibition-based biosensors have a wide range of applications in the fields of environmental safety, food safety, and clinical analysis since toxic substances containing heavy metals and pesticides are the most effective inhibitors of enzymes. This paper is aimed at exploring the methods used and the sensitivity to various inhibitors for biosensors based on the inhibition of enzymes such as glucose oxidase, urease, tyrosinase, cholinesterase, and other enzymes.
基于酶规划的生物分级作为环境监测和食品安全初步筛选方法的应用系统综述环境监测和食品安全
本文综述了基于酶抑制的生物传感器开发过程中的最新发现。由于生物传感器具有出色的选择性和灵敏度,因此是传统分析方法的重要替代方法;传统分析方法只依赖仪器数据的生成,而不进行任何初步筛选。从根本上说,生物传感器能够将生物活性转化为可量化的信号。这些基于酶抑制的生物传感器在环境安全、食品安全和临床分析领域有着广泛的应用,因为含有重金属和农药的有毒物质是酶最有效的抑制剂。本文旨在探讨基于葡萄糖氧化酶、尿素酶、酪氨酸酶、胆碱酯酶等酶的抑制作用的生物传感器所使用的方法以及对各种抑制剂的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信