{"title":"Boosting the classification success in imbalanced data of bee larva cells","authors":"Serkan Özgün, M. A. Şahman","doi":"10.58190/ijamec.2024.78","DOIUrl":null,"url":null,"abstract":"Selecting the appropriate honey harvesting method is crucial for sustainable beekeeping and optimal honey production. The use of primitive harvesting methods can lead to the death of bees and a decrease in honey yield. This study aims to address the issue of detecting and classifying young larvae on honeycombs. However, the area where young larvae are found is limited compared to other areas. In this study, the dataset obtained from honeycombs was imbalanced, which has used the Synthetic Minority Oversampling TEchnique (SMOTE) algorithm to balance it. The SMOTE algorithm is a synthetic data generation method. The balanced dataset was then used for classification processes with k-Nearest Neighbors algorithm (k-NN), Decision Trees, and Support Vector Machines. The evaluation of the classification results included the F1-Score, G-Mean, and AUC metrics. The results showed that the classification of the dataset balanced with synthetic data was more successful.\n\n","PeriodicalId":496101,"journal":{"name":"International Journal of Applied Methods in Electronics and Computers","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Methods in Electronics and Computers","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.58190/ijamec.2024.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting the appropriate honey harvesting method is crucial for sustainable beekeeping and optimal honey production. The use of primitive harvesting methods can lead to the death of bees and a decrease in honey yield. This study aims to address the issue of detecting and classifying young larvae on honeycombs. However, the area where young larvae are found is limited compared to other areas. In this study, the dataset obtained from honeycombs was imbalanced, which has used the Synthetic Minority Oversampling TEchnique (SMOTE) algorithm to balance it. The SMOTE algorithm is a synthetic data generation method. The balanced dataset was then used for classification processes with k-Nearest Neighbors algorithm (k-NN), Decision Trees, and Support Vector Machines. The evaluation of the classification results included the F1-Score, G-Mean, and AUC metrics. The results showed that the classification of the dataset balanced with synthetic data was more successful.