Large Language Model-Informed X-ray Photoelectron Spectroscopy Data Analysis

Signals Pub Date : 2024-03-27 DOI:10.3390/signals5020010
J. de Curtò, I. de Zarzà, Gemma Roig, C. T. Calafate
{"title":"Large Language Model-Informed X-ray Photoelectron Spectroscopy Data Analysis","authors":"J. de Curtò, I. de Zarzà, Gemma Roig, C. T. Calafate","doi":"10.3390/signals5020010","DOIUrl":null,"url":null,"abstract":"X-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials science, offering invaluable insights into the chemical states and electronic structure of a material. However, the interpretation of XPS spectra can be complex, requiring deep expertise and often sophisticated curve-fitting methods. In this study, we present a novel approach to the analysis of XPS data, integrating the utilization of large language models (LLMs), specifically OpenAI’s GPT-3.5/4 Turbo to provide insightful guidance during the data analysis process. Working in the framework of the CIRCE-NAPP beamline at the CELLS ALBA Synchrotron facility where data are obtained using ambient pressure X-ray photoelectron spectroscopy (APXPS), we implement robust curve-fitting techniques on APXPS spectra, highlighting complex cases including overlapping peaks, diverse chemical states, and noise presence. Post curve fitting, we engage the LLM to facilitate the interpretation of the fitted parameters, leaning on its extensive training data to simulate an interaction corresponding to expert consultation. The manuscript presents also a real use case utilizing GPT-4 and Meta’s LLaMA-2 and describes the integration of the functionality into the TANGO control system. Our methodology not only offers a fresh perspective on XPS data analysis, but also introduces a new dimension of artificial intelligence (AI) integration into scientific research. It showcases the power of LLMs in enhancing the interpretative process, particularly in scenarios wherein expert knowledge may not be immediately available. Despite the inherent limitations of LLMs, their potential in the realm of materials science research is promising, opening doors to a future wherein AI assists in the transformation of raw data into meaningful scientific knowledge.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals5020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials science, offering invaluable insights into the chemical states and electronic structure of a material. However, the interpretation of XPS spectra can be complex, requiring deep expertise and often sophisticated curve-fitting methods. In this study, we present a novel approach to the analysis of XPS data, integrating the utilization of large language models (LLMs), specifically OpenAI’s GPT-3.5/4 Turbo to provide insightful guidance during the data analysis process. Working in the framework of the CIRCE-NAPP beamline at the CELLS ALBA Synchrotron facility where data are obtained using ambient pressure X-ray photoelectron spectroscopy (APXPS), we implement robust curve-fitting techniques on APXPS spectra, highlighting complex cases including overlapping peaks, diverse chemical states, and noise presence. Post curve fitting, we engage the LLM to facilitate the interpretation of the fitted parameters, leaning on its extensive training data to simulate an interaction corresponding to expert consultation. The manuscript presents also a real use case utilizing GPT-4 and Meta’s LLaMA-2 and describes the integration of the functionality into the TANGO control system. Our methodology not only offers a fresh perspective on XPS data analysis, but also introduces a new dimension of artificial intelligence (AI) integration into scientific research. It showcases the power of LLMs in enhancing the interpretative process, particularly in scenarios wherein expert knowledge may not be immediately available. Despite the inherent limitations of LLMs, their potential in the realm of materials science research is promising, opening doors to a future wherein AI assists in the transformation of raw data into meaningful scientific knowledge.
基于大语言模型的 X 射线光电子能谱数据分析
X 射线光电子能谱(XPS)仍然是材料科学中的一项基础技术,能为了解材料的化学状态和电子结构提供宝贵的信息。然而,XPS 光谱的解读可能非常复杂,需要深厚的专业知识和复杂的曲线拟合方法。在本研究中,我们提出了一种分析 XPS 数据的新方法,综合利用大型语言模型 (LLM),特别是 OpenAI 的 GPT-3.5/4 Turbo,在数据分析过程中提供具有洞察力的指导。在利用环境压力 X 射线光电子能谱(APXPS)获取数据的 CELLS ALBA 同步加速器设施的 CIRCE-NAPP 光束线框架内,我们对 APXPS 光谱实施了强大的曲线拟合技术,突出了包括重叠峰、不同化学状态和噪声存在在内的复杂情况。曲线拟合后,我们利用 LLM 的大量训练数据来模拟与专家咨询相对应的互动,从而促进对拟合参数的解释。手稿还介绍了一个利用 GPT-4 和 Meta 的 LLaMA-2 的实际案例,并描述了将该功能集成到 TANGO 控制系统中的情况。我们的方法不仅为 XPS 数据分析提供了一个全新的视角,还为人工智能(AI)融入科学研究引入了一个新的维度。它展示了 LLM 在增强解释过程中的威力,尤其是在无法立即获得专家知识的情况下。尽管 LLMs 存在固有的局限性,但其在材料科学研究领域的潜力令人期待,为人工智能协助将原始数据转化为有意义的科学知识的未来打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信