Multimodal automatic assessment of acute pain through facial videos and heart rate signals utilizing transformer-based architectures

Stefanos Gkikas, N. Tachos, Stelios Andreadis, V. Pezoulas, D. Zaridis, George Gkois, Anastasia Matonaki, Thanos G. Stavropoulos, Dimitrios I. Fotiadis
{"title":"Multimodal automatic assessment of acute pain through facial videos and heart rate signals utilizing transformer-based architectures","authors":"Stefanos Gkikas, N. Tachos, Stelios Andreadis, V. Pezoulas, D. Zaridis, George Gkois, Anastasia Matonaki, Thanos G. Stavropoulos, Dimitrios I. Fotiadis","doi":"10.3389/fpain.2024.1372814","DOIUrl":null,"url":null,"abstract":"Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the Spatial Module, responsible for extracting embeddings from videos; the Heart Rate Encoder, tasked with mapping heart rate signals into a higher dimensional space; the AugmNet, designed to create learning-based augmentations in the latent space; and the Temporal Module, which utilizes the extracted video and heart rate embeddings for the final assessment. The Spatial-Module undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the BioVid database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing 9.62 million parameters for the entire framework.","PeriodicalId":12641,"journal":{"name":"Frontiers in Pain Research","volume":"39 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pain Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpain.2024.1372814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the Spatial Module, responsible for extracting embeddings from videos; the Heart Rate Encoder, tasked with mapping heart rate signals into a higher dimensional space; the AugmNet, designed to create learning-based augmentations in the latent space; and the Temporal Module, which utilizes the extracted video and heart rate embeddings for the final assessment. The Spatial-Module undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the BioVid database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing 9.62 million parameters for the entire framework.
利用基于变压器的架构,通过面部视频和心率信号对急性疼痛进行多模式自动评估
准确客观的疼痛评估对于制定有效的疼痛管理方案至关重要,其目的是减轻患者的痛苦,防止患者功能减退。本研究介绍了一个利用视频和心率信号对急性疼痛进行多模态自动评估的框架。该框架由四个关键模块组成:空间模块,负责从视频中提取嵌入;心率编码器,负责将心率信号映射到更高维度的空间;AugmNet,用于在潜在空间中创建基于学习的增强;以及时间模块,利用提取的视频和心率嵌入进行最终评估。空间模块采用两阶段策略进行预训练:首先,以人脸识别为目标,学习通用的面部特征;其次,以多任务学习方法中的情绪识别为目标,为自动疼痛评估提取高质量的嵌入。利用 BioVid 数据库中的面部视频和从心电图中提取的心率进行的实验,以及与 29 项研究的直接比较,证明了在单模态和多模态环境下的一流性能,并保持了较高的效率。在多模态环境下,二元和多级疼痛分类任务的准确率分别达到了 82.74% 和 39.77%,整个框架使用了 962 万个参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信