The Impact of Temperature on CO2 Corrosion and the Formation of Corrosion Product Film

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Corrosion Pub Date : 2024-03-28 DOI:10.5006/4529
Kaiyuan Zhai, Ling Guo, Ning Zhu, Jiayi Tang, Liusi Yu, Hu Wang, Juan Xie
{"title":"The Impact of Temperature on CO2 Corrosion and the Formation of Corrosion Product Film","authors":"Kaiyuan Zhai, Ling Guo, Ning Zhu, Jiayi Tang, Liusi Yu, Hu Wang, Juan Xie","doi":"10.5006/4529","DOIUrl":null,"url":null,"abstract":"\n The impact of temperature on CO2 corrosion were investigated by weight loss, in situ electrochemical measurements and characterization of corrosion product film. The results showed that with the increase of temperature, corrosion rate decreased remarkably, which can be ascribed to different product film formed on metal surface. As the temperature increased, the growth tendency of FeCO3 crystals on the (012) plane becomes more pronounced, ultimately forming a dense film. Synchrotron based computed laminography (SRCL) analysis proved the porosity of products decreased with the rising of temperature. The relationship between microstructure of product film and corrosion rate had also been proposed.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4529","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of temperature on CO2 corrosion were investigated by weight loss, in situ electrochemical measurements and characterization of corrosion product film. The results showed that with the increase of temperature, corrosion rate decreased remarkably, which can be ascribed to different product film formed on metal surface. As the temperature increased, the growth tendency of FeCO3 crystals on the (012) plane becomes more pronounced, ultimately forming a dense film. Synchrotron based computed laminography (SRCL) analysis proved the porosity of products decreased with the rising of temperature. The relationship between microstructure of product film and corrosion rate had also been proposed.
温度对二氧化碳腐蚀和腐蚀产物膜形成的影响
通过失重、原位电化学测量和腐蚀产物膜的表征,研究了温度对 CO2 腐蚀的影响。结果表明,随着温度的升高,腐蚀速率明显降低,这可归因于金属表面形成了不同的产物膜。随着温度的升高,FeCO3 晶体在 (012) 平面上的生长趋势越来越明显,最终形成了一层致密的膜。同步辐射计算机层析成像(SRCL)分析证明,产品的孔隙率随温度升高而降低。此外,还提出了产品薄膜的微观结构与腐蚀速率之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion
Corrosion MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
2.80
自引率
12.50%
发文量
97
审稿时长
3 months
期刊介绍: CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion. 70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities. Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives: • Contribute awareness of corrosion phenomena, • Advance understanding of fundamental process, and/or • Further the knowledge of techniques and practices used to reduce corrosion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信