Boosting Reliability

Elaid Bouchetob, Bouchra Nadji
{"title":"Boosting Reliability","authors":"Elaid Bouchetob, Bouchra Nadji","doi":"10.32985/ijeces.15.4.2","DOIUrl":null,"url":null,"abstract":"Reliability is very important in the world of electronic device design and production, particularly in applications where continuous and flawless performance is a necessity. This directs our attention to the boost converter, which forms the foundation of power electronics, renewable energy systems, and electric vehicles. However, as technology progresses, the choice of materials for these converters is a big challenge. For that, in this paper, the impact of using Silicon Carbide (SiC) devices, with their promising material properties, on the reliability of boost converters is presented. Because the results showed that more than 80% of boost converter failures are caused by semiconductors, the use of SiC materials is assessed by determining its reliability using MIL-HDBK-217 standard. In addition, a comparative study with the use of traditional Silicon (Si) is conducted. The results showed that the failure rate of boost converters based on SiC devices reduced from 8.335 failure/10-6h to 6.243 failure/10-6h. This notable shift in failure rates establishes SiC as a pivotal material in the evolution of boost converter technology, offering a compelling solution to address the persistent challenges associated with semiconductor-related failures.","PeriodicalId":507791,"journal":{"name":"International journal of electrical and computer engineering systems","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical and computer engineering systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.15.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliability is very important in the world of electronic device design and production, particularly in applications where continuous and flawless performance is a necessity. This directs our attention to the boost converter, which forms the foundation of power electronics, renewable energy systems, and electric vehicles. However, as technology progresses, the choice of materials for these converters is a big challenge. For that, in this paper, the impact of using Silicon Carbide (SiC) devices, with their promising material properties, on the reliability of boost converters is presented. Because the results showed that more than 80% of boost converter failures are caused by semiconductors, the use of SiC materials is assessed by determining its reliability using MIL-HDBK-217 standard. In addition, a comparative study with the use of traditional Silicon (Si) is conducted. The results showed that the failure rate of boost converters based on SiC devices reduced from 8.335 failure/10-6h to 6.243 failure/10-6h. This notable shift in failure rates establishes SiC as a pivotal material in the evolution of boost converter technology, offering a compelling solution to address the persistent challenges associated with semiconductor-related failures.
提高可靠性
在电子设备的设计和生产领域,可靠性是非常重要的,尤其是在需要持续和完美性能的应用领域。升压转换器是电力电子设备、可再生能源系统和电动汽车的基础。然而,随着技术的进步,这些转换器的材料选择也面临着巨大的挑战。为此,本文介绍了使用碳化硅(SiC)器件对升压转换器可靠性的影响,碳化硅具有良好的材料特性。由于研究结果表明 80% 以上的升压转换器故障是由半导体引起的,因此本文采用 MIL-HDBK-217 标准对碳化硅材料的可靠性进行了评估。此外,还进行了与使用传统硅(Si)材料的比较研究。结果显示,基于碳化硅器件的升压转换器的故障率从 8.335 次/10-6 小时降至 6.243 次/10-6 小时。故障率的这一显著变化使 SiC 成为升压转换器技术发展过程中的一种关键材料,为解决与半导体相关故障有关的长期挑战提供了一种极具吸引力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信