{"title":"A multi-average based pseudo nearest neighbor classifier","authors":"Dapeng Li, Jing Guo","doi":"10.3233/aic-230312","DOIUrl":null,"url":null,"abstract":"Conventional k nearest neighbor (KNN) rule is a simple yet effective method for classification, but its classification performance is easily degraded in the case of small size training samples with existing outliers. To address this issue, A multi-average based pseudo nearest neighbor classifier (MAPNN) rule is proposed. In the proposed MAPNN rule, k ( k − 1 ) / 2 ( k > 1) local mean vectors of each class are obtained by taking the average of two points randomly from k nearest neighbors in every category, and then k pseudo nearest neighbors are chosen from k ( k − 1 ) / 2 local mean neighbors of every class to determine the category of a query point. The selected k pseudo nearest neighbors can reduce the negative impact of outliers in some degree. Extensive experiments are carried out on twenty-one numerical real data sets and four artificial data sets by comparing MAPNN to other five KNN-based methods. The experimental results demonstrate that the proposed MAPNN is effective for classification task and achieves better classification results in the small-size samples cases comparing to five relative KNN-based classifiers.","PeriodicalId":505412,"journal":{"name":"AI Communications","volume":"44 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/aic-230312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional k nearest neighbor (KNN) rule is a simple yet effective method for classification, but its classification performance is easily degraded in the case of small size training samples with existing outliers. To address this issue, A multi-average based pseudo nearest neighbor classifier (MAPNN) rule is proposed. In the proposed MAPNN rule, k ( k − 1 ) / 2 ( k > 1) local mean vectors of each class are obtained by taking the average of two points randomly from k nearest neighbors in every category, and then k pseudo nearest neighbors are chosen from k ( k − 1 ) / 2 local mean neighbors of every class to determine the category of a query point. The selected k pseudo nearest neighbors can reduce the negative impact of outliers in some degree. Extensive experiments are carried out on twenty-one numerical real data sets and four artificial data sets by comparing MAPNN to other five KNN-based methods. The experimental results demonstrate that the proposed MAPNN is effective for classification task and achieves better classification results in the small-size samples cases comparing to five relative KNN-based classifiers.