Determination of seawater COD spectra using double-loop contraction and sorted frog optimization

Shiwei Hou, Yingying Zhang, Dachao Yuan, Xiandong Feng, Ying Zhang
{"title":"Determination of seawater COD spectra using double-loop contraction and sorted frog optimization","authors":"Shiwei Hou, Yingying Zhang, Dachao Yuan, Xiandong Feng, Ying Zhang","doi":"10.2166/wst.2024.101","DOIUrl":null,"url":null,"abstract":"\n This study develops a novel double-loop contraction and C value sorting selection-based shrinkage frog-leaping algorithm (double-contractive cognitive random field [DC-CRF]) to mitigate the interference of complex salts and ions in seawater on the ultraviolet–visible (UV–Vis) absorbance spectra for chemical oxygen demand (COD) quantification. The key innovations of DC-CRF are introducing variable importance evaluation via C value to guide wavelength selection and accelerate convergence; a double-loop structure integrating random frog (RF) leaping and contraction attenuation to dynamically balance convergence speed and efficiency. Utilizing seawater samples from Jiaozhou Bay, DC-CRF-partial least squares regression (PLSR) reduced the input variables by 97.5% after 1,600 iterations relative to full-spectrum PLSR, RF-PLSR, and CRF-PLSR. It achieved a test R2 of 0.943 and root mean square error of 1.603, markedly improving prediction accuracy and efficiency. This work demonstrates the efficacy of DC-CRF-PLSR in enhancing UV–Vis spectroscopy for rapid COD analysis in intricate seawater matrices, providing an efficient solution for optimizing seawater spectra.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"54 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a novel double-loop contraction and C value sorting selection-based shrinkage frog-leaping algorithm (double-contractive cognitive random field [DC-CRF]) to mitigate the interference of complex salts and ions in seawater on the ultraviolet–visible (UV–Vis) absorbance spectra for chemical oxygen demand (COD) quantification. The key innovations of DC-CRF are introducing variable importance evaluation via C value to guide wavelength selection and accelerate convergence; a double-loop structure integrating random frog (RF) leaping and contraction attenuation to dynamically balance convergence speed and efficiency. Utilizing seawater samples from Jiaozhou Bay, DC-CRF-partial least squares regression (PLSR) reduced the input variables by 97.5% after 1,600 iterations relative to full-spectrum PLSR, RF-PLSR, and CRF-PLSR. It achieved a test R2 of 0.943 and root mean square error of 1.603, markedly improving prediction accuracy and efficiency. This work demonstrates the efficacy of DC-CRF-PLSR in enhancing UV–Vis spectroscopy for rapid COD analysis in intricate seawater matrices, providing an efficient solution for optimizing seawater spectra.
利用双环收缩和分类蛙优化确定海水 COD 光谱
本研究开发了一种新颖的基于收缩蛙跳算法(双收缩认知随机场 [DC-CRF])的双环收缩和 C 值排序选择算法,以减轻海水中复杂盐分和离子对化学需氧量(COD)定量的紫外可见(UV-Vis)吸收光谱的干扰。DC-CRF 的主要创新点包括:通过 C 值引入可变重要性评估,以指导波长选择并加速收敛;集成随机蛙跳(RF)和收缩衰减的双环结构,以动态平衡收敛速度和效率。利用胶州湾海水样本,DC-CRF-部分最小二乘回归(PLSR)与全谱PLSR、RF-PLSR和CRF-PLSR相比,经过1600次迭代后,输入变量减少了97.5%。测试 R2 为 0.943,均方根误差为 1.603,显著提高了预测精度和效率。这项工作证明了 DC-CRF-PLSR 在增强紫外可见光谱快速分析复杂海水基质中 COD 方面的功效,为优化海水光谱提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信