Ehssan Ahmed Hassan, Maha A. Tony, Mohamed M. Awad
{"title":"Thermal Energy Storage Using Hybrid Nanofluid Phase Change Material (PCM) based on Waste Sludge Incorp Rated ZnO/α-Fe2O3","authors":"Ehssan Ahmed Hassan, Maha A. Tony, Mohamed M. Awad","doi":"10.3390/nano14070604","DOIUrl":null,"url":null,"abstract":"Renewable solar energy storage facilities are attracting scientists’ attention since they can overcome the key issues affecting the shortage of energy. A nanofluid phase change material (PCM) is introduced as a new sort of PCM is settled by suspending small proportions of nanoparticles in melting paraffin. ZnO/α-Fe2O3 nanocrystals were prepared by a simple co-precipitation route and ultrasonically dispersed in the paraffin to be a nanofluid-PCM. The behaviors of the ZnO/α-Fe2O3 nanocrystals were verified by X-ray diffraction (XRD) analysis, and the average particle size and the morphology of the nanoparticles were explored by transmission electron microscopy (TEM). For the object of industrial ecology concept, aluminum-based waste derived from water-works plants alum sludge (AS) is dried and augmented with the ZnO/α-Fe2O3 nanocrystals as a source of multimetals such as aluminum to the composite, and it is named AS-ZnO/α-Fe2O3. The melting and freezing cycles were checked to evaluate the PCM at different weight proportions of AS-ZnO/α-Fe2O3 nanocrystals, which confirmed that their presence enhanced the heat transfer rate of paraffin. The nanofluids with AS-ZnO/α-Fe2O3 nanoparticles revealed good stability in melting paraffin. Additionally, the melting and freezing cycles of nanofluid-PCM (PCM- ZnO/α-Fe2O3 nanoparticles) were significantly superior upon supplementing ZnO/α-Fe2O3 nanoparticles. Nanofluid-PCM contained the AS-ZnO/α-Fe2O3 nanocrystals in the range of 0.25, 0.5, 1.0, and 1.5 wt%. The results showed that 1.0 wt% AS-ZnO/α-Fe2O3 nanocrystals contained in the nanofluid-PCM could enhance the performance with 93% with a heat gained reached 47 kJ.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"80 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14070604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable solar energy storage facilities are attracting scientists’ attention since they can overcome the key issues affecting the shortage of energy. A nanofluid phase change material (PCM) is introduced as a new sort of PCM is settled by suspending small proportions of nanoparticles in melting paraffin. ZnO/α-Fe2O3 nanocrystals were prepared by a simple co-precipitation route and ultrasonically dispersed in the paraffin to be a nanofluid-PCM. The behaviors of the ZnO/α-Fe2O3 nanocrystals were verified by X-ray diffraction (XRD) analysis, and the average particle size and the morphology of the nanoparticles were explored by transmission electron microscopy (TEM). For the object of industrial ecology concept, aluminum-based waste derived from water-works plants alum sludge (AS) is dried and augmented with the ZnO/α-Fe2O3 nanocrystals as a source of multimetals such as aluminum to the composite, and it is named AS-ZnO/α-Fe2O3. The melting and freezing cycles were checked to evaluate the PCM at different weight proportions of AS-ZnO/α-Fe2O3 nanocrystals, which confirmed that their presence enhanced the heat transfer rate of paraffin. The nanofluids with AS-ZnO/α-Fe2O3 nanoparticles revealed good stability in melting paraffin. Additionally, the melting and freezing cycles of nanofluid-PCM (PCM- ZnO/α-Fe2O3 nanoparticles) were significantly superior upon supplementing ZnO/α-Fe2O3 nanoparticles. Nanofluid-PCM contained the AS-ZnO/α-Fe2O3 nanocrystals in the range of 0.25, 0.5, 1.0, and 1.5 wt%. The results showed that 1.0 wt% AS-ZnO/α-Fe2O3 nanocrystals contained in the nanofluid-PCM could enhance the performance with 93% with a heat gained reached 47 kJ.