Machine learning impact of radiative blood flow over a wedge in a time-dependent MHD Williamson fluid

Priyadharshini P, Karpagam V
{"title":"Machine learning impact of radiative blood flow over a wedge in a time-dependent MHD Williamson fluid","authors":"Priyadharshini P, Karpagam V","doi":"10.56947/amcs.v22.275","DOIUrl":null,"url":null,"abstract":"The main objective of this research is to examine the radiation effects of an unsteady MHD Williamson biofluid (Blood) over a wedge that interacts with thermophoresis diffusion and Brownian motion. The necessary prerequisites of partial differential equations (PDEs) ensure the development of suitable mathematical frameworks for momentum, energy, and concentration. These appropriate nonlinear PDEs are frequently transmuted into ordinary differential equations (ODEs) by implemented similarity transformation. The results of these ODEs have a significant impact on the BVP4C approach from the MATLAB package computational structures. The graphs and tabular data provided the various values for pertinent parameters on the non-dimensional velocity temperature, concentration profiles, and the numerical values of skin friction, Nusselt number, and Sherwood number were found and discussed in detail. A novel aspect of the research effort was the effective incorporation of multiple linear regression (MLR) employing machine learning (ML), a statistical technique to forecast the physical quantities for present numerical results with an accuracy of 95%. Finally, the response and predicted variables were verified using linear regression. The potential benefit of these outcomes is to develop novel therapeutic and diagnostic strategies for cancer treatment, as well as for a better understanding of medical problems and designing more effective drug delivery systems. In particular, for significant developments in computer technology and resources, the enormous computational cost of these simulations still keeps them from becoming a clinical tool. An additional benefit is that the outcomes showed acceptable congruence with the tangible findings of recent research and enlargements for future investigators.","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"137 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v22.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this research is to examine the radiation effects of an unsteady MHD Williamson biofluid (Blood) over a wedge that interacts with thermophoresis diffusion and Brownian motion. The necessary prerequisites of partial differential equations (PDEs) ensure the development of suitable mathematical frameworks for momentum, energy, and concentration. These appropriate nonlinear PDEs are frequently transmuted into ordinary differential equations (ODEs) by implemented similarity transformation. The results of these ODEs have a significant impact on the BVP4C approach from the MATLAB package computational structures. The graphs and tabular data provided the various values for pertinent parameters on the non-dimensional velocity temperature, concentration profiles, and the numerical values of skin friction, Nusselt number, and Sherwood number were found and discussed in detail. A novel aspect of the research effort was the effective incorporation of multiple linear regression (MLR) employing machine learning (ML), a statistical technique to forecast the physical quantities for present numerical results with an accuracy of 95%. Finally, the response and predicted variables were verified using linear regression. The potential benefit of these outcomes is to develop novel therapeutic and diagnostic strategies for cancer treatment, as well as for a better understanding of medical problems and designing more effective drug delivery systems. In particular, for significant developments in computer technology and resources, the enormous computational cost of these simulations still keeps them from becoming a clinical tool. An additional benefit is that the outcomes showed acceptable congruence with the tangible findings of recent research and enlargements for future investigators.
机器学习对时间相关 MHD 威廉姆森流体中楔形上辐射血流的影响
本研究的主要目的是研究威廉姆森生物流体(血液)在楔形上与热泳扩散和布朗运动相互作用的非稳态 MHD 辐射效应。偏微分方程(PDEs)的必要先决条件确保为动量、能量和浓度建立合适的数学框架。这些适当的非线性偏微分方程经常通过相似性变换转换成常微分方程(ODE)。这些 ODE 的结果对 MATLAB 软件包计算结构中的 BVP4C 方法有重大影响。图形和表格数据提供了非维度速度温度、浓度曲线上相关参数的各种值,并发现和详细讨论了表皮摩擦力、努塞尔特数和舍伍德数的数值。研究工作的一个新颖之处是有效地采用了机器学习(ML)的多元线性回归(MLR),这是一种预测物理量的统计技术,准确率高达 95%。最后,利用线性回归对响应变量和预测变量进行了验证。这些成果的潜在益处在于为癌症治疗开发新的治疗和诊断策略,以及更好地理解医学问题和设计更有效的给药系统。特别是,尽管计算机技术和资源有了长足的发展,但这些模拟的巨大计算成本仍使其无法成为临床工具。另外一个好处是,研究结果与近期研究的实际成果一致,并为未来的研究人员提供了更多的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信