The nonlinear Schrödinger equation in cylindrical geometries

R. Krechetnikov
{"title":"The nonlinear Schrödinger equation in cylindrical geometries","authors":"R. Krechetnikov","doi":"10.1088/1751-8121/ad33dd","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The nonlinear Schrödinger equation was originally derived in nonlinear optics as a model for beam propagation, which naturally requires its application in cylindrical coordinates. However, that derivation was performed in Cartesian coordinates for linearly polarized fields with the Laplacian <jats:inline-formula>\n <jats:tex-math><?CDATA $\\Delta_{\\perp} = \\partial_{x}^{2} + \\partial_{y}^{2}$?></jats:tex-math>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ</mml:mi>\n <mml:mrow>\n <mml:mo>⊥</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:msubsup>\n <mml:mi>∂</mml:mi>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>+</mml:mo>\n <mml:msubsup>\n <mml:mi>∂</mml:mi>\n <mml:mrow>\n <mml:mi>y</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"aad33ddieqn1.gif\" xlink:type=\"simple\" />\n </jats:inline-formula> transverse to the beam <jats:italic>z</jats:italic>-direction, and then, tacitly assuming covariance, extended to axisymmetric cylindrical setting. As we show, first with a simple example and next with a systematic derivation in cylindrical coordinates for axisymmetric and hence radially polarized fields, <jats:inline-formula>\n <jats:tex-math><?CDATA $\\Delta_{\\perp} = \\partial_{r}^{2} + \\frac{1}{r} \\partial_{r}$?></jats:tex-math>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ</mml:mi>\n <mml:mrow>\n <mml:mo>⊥</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:msubsup>\n <mml:mi>∂</mml:mi>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>+</mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mi>r</mml:mi>\n </mml:mfrac>\n <mml:msub>\n <mml:mi>∂</mml:mi>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"aad33ddieqn2.gif\" xlink:type=\"simple\" />\n </jats:inline-formula> must be amended with a potential <jats:inline-formula>\n <jats:tex-math><?CDATA $V(r) = \\frac{1}{r^{2}}$?></jats:tex-math>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mi>r</mml:mi>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mfrac>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"aad33ddieqn3.gif\" xlink:type=\"simple\" />\n </jats:inline-formula>, which leads to a Gross–Pitaevskii equation instead. Hence, results for beam dynamics and collapse must be revisited in this setting.</jats:p>","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad33dd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear Schrödinger equation was originally derived in nonlinear optics as a model for beam propagation, which naturally requires its application in cylindrical coordinates. However, that derivation was performed in Cartesian coordinates for linearly polarized fields with the Laplacian Δ = x 2 + y 2 transverse to the beam z-direction, and then, tacitly assuming covariance, extended to axisymmetric cylindrical setting. As we show, first with a simple example and next with a systematic derivation in cylindrical coordinates for axisymmetric and hence radially polarized fields, Δ = r 2 + 1 r r must be amended with a potential V ( r ) = 1 r 2 , which leads to a Gross–Pitaevskii equation instead. Hence, results for beam dynamics and collapse must be revisited in this setting.
圆柱几何中的非线性薛定谔方程
非线性薛定谔方程最初是作为光束传播模型在非线性光学中推导出来的,这自然需要在圆柱坐标中应用。然而,该推导是在笛卡尔坐标下针对线性偏振场进行的,其拉普拉奇值为 Δ ⊥ = ∂ x 2 + ∂ y 2,横向于光束的 Z 方向。正如我们首先通过一个简单的例子,然后通过轴对称圆柱坐标的系统推导所展示的那样,Δ ⊥ = ∂ r 2 + 1 r ∂ r 必须用势能 V ( r ) = 1 r 2 来修正,这将导致格罗斯-皮塔耶夫斯基方程。因此,必须在这种情况下重新研究梁动力学和坍塌的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信