Hyperspectral Image Sharpening Using Fusion Techniques -A Case Study at Salah Al-Din Province/Iraq-

Q4 Earth and Planetary Sciences
Rawnak A. Abdulwahab, Firas A. Hadi
{"title":"Hyperspectral Image Sharpening Using Fusion Techniques -A Case Study at Salah Al-Din Province/Iraq-","authors":"Rawnak A. Abdulwahab, Firas A. Hadi","doi":"10.24996/ijs.2024.65.3.46","DOIUrl":null,"url":null,"abstract":" The data fusion process includes merging two or more pieces of information obtained from different sensors. Satellite image fusion research aims to create a new image by combining two images captured by different sensors using various methodologies. In this research, image sharpening tools were used to combine a hyperspectral image with a low spatial resolution captured by a Hyperion sensor mounted on the Earth Observation 1 (EO-1) satellite with a grayscale high spatial resolution image captured by Enhanced Thematic Mapper Plus (ETM +) sensor mounted on Landsat-8 (resampling first one to ensure equal spatial resolution of both images). In addition, three techniques were adopted for implementing the Fusion mechanism: the Principal Component Analysis PCA, the Nearest Neighbor Diffusion NNDifuse, and the Gram-Schmidt method; these were used to sharpen hyperspectral data using high spatial resolution. The result showed that the Gram-Schmidt method could give Hyperspectral images with higher spectral and spatial resolution in panchromatic image data more accurately than the other methods.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"78 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.3.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

 The data fusion process includes merging two or more pieces of information obtained from different sensors. Satellite image fusion research aims to create a new image by combining two images captured by different sensors using various methodologies. In this research, image sharpening tools were used to combine a hyperspectral image with a low spatial resolution captured by a Hyperion sensor mounted on the Earth Observation 1 (EO-1) satellite with a grayscale high spatial resolution image captured by Enhanced Thematic Mapper Plus (ETM +) sensor mounted on Landsat-8 (resampling first one to ensure equal spatial resolution of both images). In addition, three techniques were adopted for implementing the Fusion mechanism: the Principal Component Analysis PCA, the Nearest Neighbor Diffusion NNDifuse, and the Gram-Schmidt method; these were used to sharpen hyperspectral data using high spatial resolution. The result showed that the Gram-Schmidt method could give Hyperspectral images with higher spectral and spatial resolution in panchromatic image data more accurately than the other methods.
利用融合技术锐化高光谱图像--伊拉克萨拉赫丁省的案例研究
数据融合过程包括将从不同传感器获取的两个或更多信息进行合并。卫星图像融合研究旨在通过使用各种方法将不同传感器捕获的两幅图像合并在一起,从而生成一幅新的图像。在这项研究中,使用了图像锐化工具,将地球观测 1 号(EO-1)卫星上的 Hyperion 传感器捕获的低空间分辨率高光谱图像与大地遥感卫星-8 上的增强型专题制图仪增强版(ETM +)传感器捕获的灰度高空间分辨率图像进行合并(对前者进行重采样以确保两幅图像的空间分辨率相同)。此外,还采用了三种技术来实现融合机制:主成分分析 PCA、近邻扩散 NNDifuse 和 Gram-Schmidt 方法;这些技术用于利用高空间分辨率锐化高光谱数据。结果表明,与其他方法相比,Gram-Schmidt 方法能更准确地生成光谱和空间分辨率更高的高光谱全色图像数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信