S. Al-Musawi, A. K. Almansorri, H. M. H. Al-Shirifi, Bara B Ahmed, A. Haider
{"title":"Titanium Dioxide Nanoparticles: A Novel Approach for Inhibiting Human Papillomavirus","authors":"S. Al-Musawi, A. K. Almansorri, H. M. H. Al-Shirifi, Bara B Ahmed, A. Haider","doi":"10.24996/ijs.2024.65.3.13","DOIUrl":null,"url":null,"abstract":" Nanotechnology products such as titanium dioxide nanoparticles (TiO2-NPs) can be used for viral infections because of their unique characteristics. The current study aimed to determine the impact of TiO2-NPs on HPV type 1 and 2 infections. The characterization of these NPs was performed using dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). The MTT assay was used to determine the toxic impacts of TiO2-NPs on BHK-21 cells. The efficiency of TiO2-NPs was performed using several parameters, including TCID50 and RT-PCR assays. An indirect immunofluorescence assay (IFA) was performed to estimate the inhibitory impact of TiO2-NPs on viral antigen expression, and Acyclovir was used as a reference medicine. When the human papilloma type 1 and 2 viruses exposed to TiO2-NPs at high doses (100 μg/mL) produced 0.3, 1.1, 2.3, and 3.3 log10 TCID50 decreases in infective virus load when compared with control viruses (P<0.0001), these TiO2-NPs doses were related to 24.9%, 35.1%, 47.2%, 59.5%, and 66.6% inhibition percentages that were determined depending on the viral titer as compared to virus control. It is concluded that TiO2-NPs have strong potential for the treatment of face and labial lesions caused by papillomaviruses 1 and 2 and could be used in topical formulations.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"42 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.3.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology products such as titanium dioxide nanoparticles (TiO2-NPs) can be used for viral infections because of their unique characteristics. The current study aimed to determine the impact of TiO2-NPs on HPV type 1 and 2 infections. The characterization of these NPs was performed using dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). The MTT assay was used to determine the toxic impacts of TiO2-NPs on BHK-21 cells. The efficiency of TiO2-NPs was performed using several parameters, including TCID50 and RT-PCR assays. An indirect immunofluorescence assay (IFA) was performed to estimate the inhibitory impact of TiO2-NPs on viral antigen expression, and Acyclovir was used as a reference medicine. When the human papilloma type 1 and 2 viruses exposed to TiO2-NPs at high doses (100 μg/mL) produced 0.3, 1.1, 2.3, and 3.3 log10 TCID50 decreases in infective virus load when compared with control viruses (P<0.0001), these TiO2-NPs doses were related to 24.9%, 35.1%, 47.2%, 59.5%, and 66.6% inhibition percentages that were determined depending on the viral titer as compared to virus control. It is concluded that TiO2-NPs have strong potential for the treatment of face and labial lesions caused by papillomaviruses 1 and 2 and could be used in topical formulations.