Ahmad AL Smadi, Dr. Ahed Abugabah, Mutasem K. Al-smadi, A. Al-Smadi
{"title":"Smart Medical Application of Deep Learning (MUNet) for Detection of COVID-19 from Chest Images","authors":"Ahmad AL Smadi, Dr. Ahed Abugabah, Mutasem K. Al-smadi, A. Al-Smadi","doi":"10.58346/jowua.2024.i1.010","DOIUrl":null,"url":null,"abstract":"Fighting the outbreak of COVID-19 is now one of humanity's most critical matters. Rapid detection and isolation of infected people are crucial for decelerating the disease's spread. Due to the pandemic, the conventional technique for COVID-19 detection, reverse transcription-polymerase chain reaction, is time-consuming and in small abundance. Therefore, studies have been searching for alternate methods for detecting COVID-19, and thus applying deep learning methods to patients' chest images has been rendering impressive performance. The primary objective of this study is to suggest a technique for COVID-19 detection in chest images that is both efficient and reliable. We propose a deep learning method for COVID-19 classification based on a modified UNet called (Covid-MUNet). The Covid-MUNet model is trained using publicly available datasets, including chest X-ray images for multi-class classification (3-class and 4-classes) and CT scans images for binary/multi-class classification (2-classes and 3-classes). Using chest images, the Covid-MUNet is a successful methodology that helps physicians rapidly identify patients with COVID-19, thereby delaying the fast spread of COVID-19. The proposed model achieved an overall accuracy of 97.44% in classifying three categories (COVID-19, Normal, and Pneumonia) and an accuracy of 96.57% in classifying two categories (COVID-19 and Normal).","PeriodicalId":38235,"journal":{"name":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","volume":"19 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jowua.2024.i1.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Fighting the outbreak of COVID-19 is now one of humanity's most critical matters. Rapid detection and isolation of infected people are crucial for decelerating the disease's spread. Due to the pandemic, the conventional technique for COVID-19 detection, reverse transcription-polymerase chain reaction, is time-consuming and in small abundance. Therefore, studies have been searching for alternate methods for detecting COVID-19, and thus applying deep learning methods to patients' chest images has been rendering impressive performance. The primary objective of this study is to suggest a technique for COVID-19 detection in chest images that is both efficient and reliable. We propose a deep learning method for COVID-19 classification based on a modified UNet called (Covid-MUNet). The Covid-MUNet model is trained using publicly available datasets, including chest X-ray images for multi-class classification (3-class and 4-classes) and CT scans images for binary/multi-class classification (2-classes and 3-classes). Using chest images, the Covid-MUNet is a successful methodology that helps physicians rapidly identify patients with COVID-19, thereby delaying the fast spread of COVID-19. The proposed model achieved an overall accuracy of 97.44% in classifying three categories (COVID-19, Normal, and Pneumonia) and an accuracy of 96.57% in classifying two categories (COVID-19 and Normal).
期刊介绍:
JoWUA is an online peer-reviewed journal and aims to provide an international forum for researchers, professionals, and industrial practitioners on all topics related to wireless mobile networks, ubiquitous computing, and their dependable applications. JoWUA consists of high-quality technical manuscripts on advances in the state-of-the-art of wireless mobile networks, ubiquitous computing, and their dependable applications; both theoretical approaches and practical approaches are encouraged to submit. All published articles in JoWUA are freely accessible in this website because it is an open access journal. JoWUA has four issues (March, June, September, December) per year with special issues covering specific research areas by guest editors.