A Modified Davidon-Fletcher-Powell Method for Solving Nonlinear Optimization Problems

Q4 Earth and Planetary Sciences
Ali Joma'a Al-Issa, Basim A. Hassan, I. Moghrabi, Ibrahim M. Sulaiman
{"title":"A Modified Davidon-Fletcher-Powell Method for Solving Nonlinear Optimization Problems","authors":"Ali Joma'a Al-Issa, Basim A. Hassan, I. Moghrabi, Ibrahim M. Sulaiman","doi":"10.24996/ijs.2024.65.3.25","DOIUrl":null,"url":null,"abstract":"     One of the quasi-Newton update formulae, namely the Davidon-Fletcher-Powell method, is crucial for resolving nonlinear programming optimization problems. In order to achieve a Newton-like condition that depends on the function values and gradient vectors at each iteration, we construct an alternative positive-definite Hessian approximation in this study. The essential theorems are established to study algorithm convergence. The proposed approach is then tested on well-known test problems and then compared to the standard DFP method. The numerical outcomes demonstrate the effectiveness of the newly developed method.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"34 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.3.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

     One of the quasi-Newton update formulae, namely the Davidon-Fletcher-Powell method, is crucial for resolving nonlinear programming optimization problems. In order to achieve a Newton-like condition that depends on the function values and gradient vectors at each iteration, we construct an alternative positive-definite Hessian approximation in this study. The essential theorems are established to study algorithm convergence. The proposed approach is then tested on well-known test problems and then compared to the standard DFP method. The numerical outcomes demonstrate the effectiveness of the newly developed method.
解决非线性优化问题的修正戴维顿-弗莱彻-鲍威尔方法
准牛顿更新公式之一,即 Davidon-Fletcher-Powell 方法,对于解决非线性编程优化问题至关重要。为了达到类似牛顿的条件,即在每次迭代时都取决于函数值和梯度向量,我们在本研究中构建了另一种正有限赫塞斯近似方法。建立了研究算法收敛性的基本定理。然后在著名的测试问题上测试了所提出的方法,并与标准 DFP 方法进行了比较。数值结果证明了新开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信