Approximating the fixed points of Suzuki's generalized non-expansive map via an efficient iterative scheme with an application

IF 0.7 Q2 MATHEMATICS
Pragati Gautam, Chanpreet Kaur
{"title":"Approximating the fixed points of Suzuki's generalized non-expansive map via an efficient iterative scheme with an application","authors":"Pragati Gautam, Chanpreet Kaur","doi":"10.5556/j.tkjm.56.2025.5261","DOIUrl":null,"url":null,"abstract":"This paper is aimed at proving the efficiency of a faster iterative scheme called $PC^*$-iterative scheme to approximate the fixed points for the class of Suzuki's Generalized non-expansive mapping in a uniformly convex Banach space. We will prove some weak and strong convergence results. It is justified numerically that the $PC^*$-iterative scheme converges faster than many other remarkable iterative schemes. We will also provide numerical illustrations with graphical representations to prove the efficiency of $PC^*$ iterative scheme. As an application of the solution of a fractional differential equation is obtained by using $PC^*$ iterative scheme.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.56.2025.5261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is aimed at proving the efficiency of a faster iterative scheme called $PC^*$-iterative scheme to approximate the fixed points for the class of Suzuki's Generalized non-expansive mapping in a uniformly convex Banach space. We will prove some weak and strong convergence results. It is justified numerically that the $PC^*$-iterative scheme converges faster than many other remarkable iterative schemes. We will also provide numerical illustrations with graphical representations to prove the efficiency of $PC^*$ iterative scheme. As an application of the solution of a fractional differential equation is obtained by using $PC^*$ iterative scheme.
通过高效迭代方案逼近铃木广义非展开映射的定点及其应用
本文旨在证明一种名为"$PC^*$-迭代方案 "的更快迭代方案在均匀凸巴纳赫空间中逼近铃木广义非展开映射类定点的效率。我们将证明一些弱收敛和强收敛结果。数值证明了$PC^*$迭代方案的收敛速度快于许多其他显著的迭代方案。我们还将通过图解提供数值说明,以证明$PC^*$迭代方案的效率。作为一个应用,我们使用$PC^*$迭代方案求得了分数微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信