Analysis of activation energy on the Johnson–Segalman nanofluid through an asymmetric microchannel: Numerical study

A. Magesh, P. Tamizharasi, O. D. Makinde, S. Srinivas
{"title":"Analysis of activation energy on the Johnson–Segalman nanofluid through an asymmetric microchannel: Numerical study","authors":"A. Magesh, P. Tamizharasi, O. D. Makinde, S. Srinivas","doi":"10.1142/s0217979225500195","DOIUrl":null,"url":null,"abstract":"Activation energy and thermal radiation as a means of heat transfer are significant and fascinating phenomena for scientists and researchers because of their significance in cancer treatment. As a result, heat kills cancer cells and shrinks tumors, making hyperthermia therapy a cutting-edge cancer treatment. This paper examines the peristaltic motion of a Johnson–Segalman nanofluid across an asymmetric pliable microchannel under the impact of activation energy. We obtained the governing equations for the non-Newtonian nanofluid. Partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) under the assumption of large wavelengths and tiny Reynolds number assumptions. The flow patterns and trapping phenomena were numerically generated using the NDSolve command of the computational mathematical software Mathematica. The influence of important liquid parameters was examined with graphical representations of the results. The current study reveals an enhancement in the heat generation parameter, an enhancement in the temperature and a reduction in the concentration.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":"44 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979225500195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Activation energy and thermal radiation as a means of heat transfer are significant and fascinating phenomena for scientists and researchers because of their significance in cancer treatment. As a result, heat kills cancer cells and shrinks tumors, making hyperthermia therapy a cutting-edge cancer treatment. This paper examines the peristaltic motion of a Johnson–Segalman nanofluid across an asymmetric pliable microchannel under the impact of activation energy. We obtained the governing equations for the non-Newtonian nanofluid. Partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) under the assumption of large wavelengths and tiny Reynolds number assumptions. The flow patterns and trapping phenomena were numerically generated using the NDSolve command of the computational mathematical software Mathematica. The influence of important liquid parameters was examined with graphical representations of the results. The current study reveals an enhancement in the heat generation parameter, an enhancement in the temperature and a reduction in the concentration.
通过不对称微通道的约翰逊-塞格曼纳米流体的活化能分析:数值研究
活化能和热辐射作为一种热传递方式,对科学家和研究人员来说是重要而迷人的现象,因为它们在癌症治疗中具有重要意义。因此,热能可以杀死癌细胞并缩小肿瘤,使热疗成为一种最先进的癌症治疗方法。本文研究了约翰逊-塞格曼纳米流体在活化能影响下穿过非对称柔性微通道的蠕动运动。我们获得了非牛顿纳米流体的控制方程。在大波长和小雷诺数假设下,偏微分方程(PDE)被简化为常微分方程(ODE)。使用计算数学软件 Mathematica 的 NDSolve 命令对流动模式和捕集现象进行了数值计算。重要液体参数的影响通过结果图表进行了检验。目前的研究结果表明,发热参数增加,温度升高,浓度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信