Динамика квадратичных стохастических операторов типа Вольтерра, соответствующих странным турнирам

R. Ganikhodzhaev, K.A. Kurganov, M.A. Tadzhieva, F.H. Haydarov
{"title":"Динамика квадратичных стохастических операторов типа Вольтерра, соответствующих странным турнирам","authors":"R. Ganikhodzhaev, K.A. Kurganov, M.A. Tadzhieva, F.H. Haydarov","doi":"10.46698/n9080-6847-9986-u","DOIUrl":null,"url":null,"abstract":"By studying the dynamics of these operators on the simplex, focusing on the presence of an interior fixed point, we investigate the conditions under which the operators exhibit nonergodic behavior. Through rigorous analysis and numerical simulations, we demonstrate that certain parameter regimes lead to nonergodicity, characterized by the convergence of initial distributions to a limited subset of the simplex. Our findings shed light on the intricate dynamics of quadratic stochastic operators with interior fixed points and provide insights into the emergence of nonergodic behavior in complex dynamical systems. Also, the nonergodicity of quadratic stochastic operators of Volterra type with an interior fixed point defined in a simplex introduces additional complexity to the already intricate dynamics of such systems. In this context, the presence of an interior fixed point within the simplex further complicates the exploration of the state space and convergence properties of the operator. In this paper, we give sufficiency and necessary conditions for the existence of strange tournaments. Also, we prove the nonergodicity of quadratic stochastic operators of Volterra type with an interior fixed point, defined in a simplex.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"38 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Владикавказский математический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46698/n9080-6847-9986-u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By studying the dynamics of these operators on the simplex, focusing on the presence of an interior fixed point, we investigate the conditions under which the operators exhibit nonergodic behavior. Through rigorous analysis and numerical simulations, we demonstrate that certain parameter regimes lead to nonergodicity, characterized by the convergence of initial distributions to a limited subset of the simplex. Our findings shed light on the intricate dynamics of quadratic stochastic operators with interior fixed points and provide insights into the emergence of nonergodic behavior in complex dynamical systems. Also, the nonergodicity of quadratic stochastic operators of Volterra type with an interior fixed point defined in a simplex introduces additional complexity to the already intricate dynamics of such systems. In this context, the presence of an interior fixed point within the simplex further complicates the exploration of the state space and convergence properties of the operator. In this paper, we give sufficiency and necessary conditions for the existence of strange tournaments. Also, we prove the nonergodicity of quadratic stochastic operators of Volterra type with an interior fixed point, defined in a simplex.
与奇特锦标赛相对应的四元随机 Volterra 型算子的动力学
通过研究这些算子在单纯形上的动态,重点关注内部固定点的存在,我们研究了算子表现出非极性行为的条件。通过严格的分析和数值模拟,我们证明了某些参数区会导致非极性,其特征是初始分布收敛到有限的单纯形子集。我们的发现揭示了具有内部定点的二次随机算子的复杂动力学,并为复杂动力学系统中出现的非啮合行为提供了启示。此外,具有内部固定点的 Volterra 型二次随机算子的非极性定义在一个简单体中,这为此类系统本已错综复杂的动力学引入了额外的复杂性。在这种情况下,单纯形内部定点的存在使探索状态空间和算子的收敛特性变得更加复杂。本文给出了奇游存在的充分条件和必要条件。此外,我们还证明了在单纯形中定义的具有内部固定点的 Volterra 型二次随机算子的非极性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信