Mehdi Motevasselin, Beata Gorczyca, Indra Kalinovich, Richard Sparling, Ramanathan Sri Ranjan
{"title":"Bioremediation of Chlorate and Chromium in Soil Columns Using Contaminated Site Native Culture","authors":"Mehdi Motevasselin, Beata Gorczyca, Indra Kalinovich, Richard Sparling, Ramanathan Sri Ranjan","doi":"10.1111/gwmr.12643","DOIUrl":null,"url":null,"abstract":"<p>Chlorate and hexavalent chromium (chromate) are both widely used in different industries, and the improper waste management in the past left many sites with elevated concentrations in groundwater that pose potential risk to human and/or ecological health. Bioremediation is a sustainable management solution that can reduce both of these contaminants to less toxic species. In our earlier microcosms experiments, we have demonstrated that native microorganisms collected from a site contaminated with chlorate and chromate can lower the concentration of these chemicals in groundwater to acceptable regulatory levels provided sufficient electron donor, nitrogen, and phosphorous are provided. In this study, continuous flow column experiments were performed using soil from the site impacted by both chlorate and chromate in the Province of Manitoba (Canada) and synthetic groundwater amended with acetate, nitrogen, and phosphorous. The objective was to evaluate at a bench scale possibility of in-situ groundwater treatment. Concentrations of chromate and chlorate measured in the columns' effluent water dropped by 86% and 96%, respectively. However, increased biomass and precipitation of trivalent chromium reduced the water flow rate in the columns, a concern for implementing this method as a long-term in-situ remediation solution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwmr.12643","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12643","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorate and hexavalent chromium (chromate) are both widely used in different industries, and the improper waste management in the past left many sites with elevated concentrations in groundwater that pose potential risk to human and/or ecological health. Bioremediation is a sustainable management solution that can reduce both of these contaminants to less toxic species. In our earlier microcosms experiments, we have demonstrated that native microorganisms collected from a site contaminated with chlorate and chromate can lower the concentration of these chemicals in groundwater to acceptable regulatory levels provided sufficient electron donor, nitrogen, and phosphorous are provided. In this study, continuous flow column experiments were performed using soil from the site impacted by both chlorate and chromate in the Province of Manitoba (Canada) and synthetic groundwater amended with acetate, nitrogen, and phosphorous. The objective was to evaluate at a bench scale possibility of in-situ groundwater treatment. Concentrations of chromate and chlorate measured in the columns' effluent water dropped by 86% and 96%, respectively. However, increased biomass and precipitation of trivalent chromium reduced the water flow rate in the columns, a concern for implementing this method as a long-term in-situ remediation solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.