On solvability of the inverse problem for a fourth-order parabolic equation with a complex-valued coefficient

IF 0.7 Q2 MATHEMATICS
A. Imanbetova, A. Sarsenbi, B. Seilbekov
{"title":"On solvability of the inverse problem for a fourth-order parabolic equation with a complex-valued coefficient","authors":"A. Imanbetova, A. Sarsenbi, B. Seilbekov","doi":"10.31489/2024m1/60-72","DOIUrl":null,"url":null,"abstract":"In this paper, the inverse problem for a fourth-order parabolic equation with a variable complex-valued coefficient is studied by the method of separation of variables. The properties of the eigenvalues of the Dirichlet and Neumann boundary value problems for a non-self-conjugate fourth-order ordinary differential equation with a complex-valued coefficient are established. Known results on the Riesz basis property of eigenfunctions of boundary value problems for ordinary differential equations with strongly regular boundary conditions in the space L2(−1,1) are used. On the basis of the Riesz basis property of eigenfunctions, formal solutions of the problems under study are constructed and theorems on the existence and uniqueness of solutions are proved. When proving theorems on the existence and uniqueness of solutions, the Bessel inequality for the Fourier coefficients of expansions of functions from space L2(−1,1) into a Fourier series in the Riesz basis is widely used. The representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are derived. The convergence of the obtained solutions is discussed.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024m1/60-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the inverse problem for a fourth-order parabolic equation with a variable complex-valued coefficient is studied by the method of separation of variables. The properties of the eigenvalues of the Dirichlet and Neumann boundary value problems for a non-self-conjugate fourth-order ordinary differential equation with a complex-valued coefficient are established. Known results on the Riesz basis property of eigenfunctions of boundary value problems for ordinary differential equations with strongly regular boundary conditions in the space L2(−1,1) are used. On the basis of the Riesz basis property of eigenfunctions, formal solutions of the problems under study are constructed and theorems on the existence and uniqueness of solutions are proved. When proving theorems on the existence and uniqueness of solutions, the Bessel inequality for the Fourier coefficients of expansions of functions from space L2(−1,1) into a Fourier series in the Riesz basis is widely used. The representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are derived. The convergence of the obtained solutions is discussed.
论带复值系数的四阶抛物方程逆问题的可解性
本文用变量分离法研究了具有可变复值系数的四阶抛物方程的逆问题。建立了具有复值系数的非自共轭四阶常微分方程的 Dirichlet 和 Neumann 边界值问题特征值的性质。使用了关于 L2(-1,1) 空间中具有强规则边界条件的常微分方程边界值问题特征函数的 Riesz 基性质的已知结果。根据特征函数的 Riesz 基础性质,构建了所研究问题的形式解,并证明了解的存在性和唯一性定理。在证明解的存在性和唯一性定理时,从空间 L2(-1,1)向里兹基傅里叶级数展开的函数的傅里叶系数的贝塞尔不等式被广泛使用。以傅里叶级数的形式推导了四阶方程带反转的边界值问题特征函数的解的表示。讨论了所得解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信