Numerical Solution of Linear Volterra Integral Equation of the Second Kind with Delay Using Lagrange Polynomials

Q4 Earth and Planetary Sciences
Iman A. Dhari, Muna M. Mustafa
{"title":"Numerical Solution of Linear Volterra Integral Equation of the Second Kind with Delay Using Lagrange Polynomials","authors":"Iman A. Dhari, Muna M. Mustafa","doi":"10.24996/ijs.2024.65.3.30","DOIUrl":null,"url":null,"abstract":"     In this study, the linear Volterra integral problem of the second kind will be treated with delay using a Lagrange polynomial. The Volterra integral problem is solved numerically using the chosen technique to obtain the best approximation. Additionally, the test examples are provided to demonstrate, through comparison with other methods' outcomes, the great degree of accuracy of the approximative solutions. Moreover, To verify the accuracy of the calculations that is used in these test examples, the absolute error is used to compare it to the exact solution. For this method, the program is written by MATLAB R2018a language.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"42 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.3.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

     In this study, the linear Volterra integral problem of the second kind will be treated with delay using a Lagrange polynomial. The Volterra integral problem is solved numerically using the chosen technique to obtain the best approximation. Additionally, the test examples are provided to demonstrate, through comparison with other methods' outcomes, the great degree of accuracy of the approximative solutions. Moreover, To verify the accuracy of the calculations that is used in these test examples, the absolute error is used to compare it to the exact solution. For this method, the program is written by MATLAB R2018a language.
使用拉格朗日多项式数值求解带延迟的线性 Volterra 第二类积分方程
在本研究中,将使用拉格朗日多项式延迟处理第二类线性 Volterra 积分问题。利用所选技术对 Volterra 积分问题进行数值求解,以获得最佳近似值。此外,还提供了测试实例,通过与其他方法的结果进行比较,证明近似解的高精确度。此外,为了验证这些测试示例中使用的计算的准确性,还使用了绝对误差与精确解进行比较。该方法的程序由 MATLAB R2018a 语言编写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信