Теорема существования фрактальной задачи Штурма - Лиувилля

B. Allahverdiev, H. Tuna
{"title":"Теорема существования фрактальной задачи Штурма - Лиувилля","authors":"B. Allahverdiev, H. Tuna","doi":"10.46698/h4206-1961-4981-h","DOIUrl":null,"url":null,"abstract":"In this article, using a new calculus defined on fractal subsets of the set of real numbers, a Sturm--Lioville type problem is discussed, namely the fractal Sturm--Liouville problem. The existence and uniqueness theorem has been proved for such equations. In this context, the historical development of the subject is discussed in the introduction. In Section 2, the basic concepts of $F^{\\alpha}$-calculus defined on fractal subsets of real numbers are given, i. e., $F^{\\alpha}$-continuity, $F^{\\alpha}$-derivative and fractal integral definitions are given and some theorems to be used in the article are given. In Section 3, the existence and uniqueness of the solutions for the fractal Sturm--Liouville problem are obtained by using the successive approximations method. Thus, the well-known existence and uniqueness problem for Sturm--Liouville equations in ordinary calculus is handled on the fractal calculus axis, and the existing results are generalized.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"52 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Владикавказский математический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46698/h4206-1961-4981-h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, using a new calculus defined on fractal subsets of the set of real numbers, a Sturm--Lioville type problem is discussed, namely the fractal Sturm--Liouville problem. The existence and uniqueness theorem has been proved for such equations. In this context, the historical development of the subject is discussed in the introduction. In Section 2, the basic concepts of $F^{\alpha}$-calculus defined on fractal subsets of real numbers are given, i. e., $F^{\alpha}$-continuity, $F^{\alpha}$-derivative and fractal integral definitions are given and some theorems to be used in the article are given. In Section 3, the existence and uniqueness of the solutions for the fractal Sturm--Liouville problem are obtained by using the successive approximations method. Thus, the well-known existence and uniqueness problem for Sturm--Liouville equations in ordinary calculus is handled on the fractal calculus axis, and the existing results are generalized.
Sturm-Liouville 分形问题的存在定理
本文利用定义在实数集分形子集上的新微积分,讨论了一个 Sturm--Lioville 类型的问题,即分形 Sturm--Liouville 问题。此类方程的存在性和唯一性定理已被证明。在此背景下,引言部分讨论了该课题的历史发展。第 2 节给出了定义在实数分形子集上的 $F^{\alpha}$ 微积分的基本概念,即 $F^{\alpha}$-连续性、$F^{\alpha}$-衍生和分形积分的定义,并给出了文章中要用到的一些定理。在第 3 节中,利用逐次逼近法得到了分形 Sturm--Liouville 问题解的存在性和唯一性。这样,在分形微积分轴上处理了普通微积分中著名的 Sturm--Liouville 方程的存在性和唯一性问题,并推广了已有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信