Six Types of Spin Solitons in Three-Component Bose-Einstein Condensates

Yuhao Wang, Lingtao Meng, Li-Chen Zhao
{"title":"Six Types of Spin Solitons in Three-Component Bose-Einstein Condensates","authors":"Yuhao Wang, Lingtao Meng, Li-Chen Zhao","doi":"10.1088/1572-9494/ad3906","DOIUrl":null,"url":null,"abstract":"\n Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose-Einstein condensate. Six types of spin soliton solutions can be obtained and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose-Einstein condensate. Six types of spin soliton solutions can be obtained and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.
三分量玻色-爱因斯坦凝聚态中的六种自旋孤子
精确解析解是研究和解释非线性系统中孤子动力学的良好候选方案。我们进一步扩展了自旋-1 玻色-爱因斯坦凝聚体非线性系数空间中自旋孤子的存在区域。我们可以得到六种自旋孤子解,它们存在于不同的区域。稳定性分析和数值模拟结果表明,三类自旋孤子在弱噪声下是稳定的。该模型的非可积特性可在两个自旋孤子碰撞后引起形状振荡和速度增加。这些结果进一步丰富了非可积模型的孤子家族,可为实验研究提供理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信