AUTOMATED CONTROL OFTHE THIN FILMS ELECTRICALCONDUCTIVITY BY THE EDDY CURRENT METHOD

Q3 Engineering
V.N. Malikov
{"title":"AUTOMATED CONTROL OFTHE THIN FILMS ELECTRICALCONDUCTIVITY BY THE EDDY CURRENT METHOD","authors":"V.N. Malikov","doi":"10.31489/2024no1/74-83","DOIUrl":null,"url":null,"abstract":"The article considers the possibility of using the eddy current method of non-destructive testing for the problems of measuring the electrical conductivity of thin metal films. As the object of measurement, we used copper films of various thicknesses obtained by vacuum vapor deposition. A review of current trends in the use of copper films in modern industry and science is presented, and an analysis is made of current methods of non-destructive testing suitable for studying thin copper films. A brief description of the deposition method and the hardware-software complex for measuring the electrical conductivity of the film is presented. A calibration curve is presented, which makes it possible to restore the values of the electrical conductivity of the film from the value of the signal of the eddy current transducer. GaAs samples were selected to construct a calibration curve. The decision is explained by the proximity of the values of the electrical conductivity of this chemical compound to the calculated indicators of the obtained thin films. The results of testing films with different characteristics are presented and the distribution of the electrical conductivity of the films depending on the batch is shown. A series of practical measurements of thin films demonstrated the existence of a relationship between the mass of the initial substance that was subjected to deposition and the characteristics of the resulting films. According to different values of electrical conductivity within the same batch, it was concluded that there is a difference in the quality of deposition of different films.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024no1/74-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers the possibility of using the eddy current method of non-destructive testing for the problems of measuring the electrical conductivity of thin metal films. As the object of measurement, we used copper films of various thicknesses obtained by vacuum vapor deposition. A review of current trends in the use of copper films in modern industry and science is presented, and an analysis is made of current methods of non-destructive testing suitable for studying thin copper films. A brief description of the deposition method and the hardware-software complex for measuring the electrical conductivity of the film is presented. A calibration curve is presented, which makes it possible to restore the values of the electrical conductivity of the film from the value of the signal of the eddy current transducer. GaAs samples were selected to construct a calibration curve. The decision is explained by the proximity of the values of the electrical conductivity of this chemical compound to the calculated indicators of the obtained thin films. The results of testing films with different characteristics are presented and the distribution of the electrical conductivity of the films depending on the batch is shown. A series of practical measurements of thin films demonstrated the existence of a relationship between the mass of the initial substance that was subjected to deposition and the characteristics of the resulting films. According to different values of electrical conductivity within the same batch, it was concluded that there is a difference in the quality of deposition of different films.
用涡流法自动控制薄膜的导电性能
文章探讨了使用涡流无损检测方法解决金属薄膜导电性测量问题的可能性。作为测量对象,我们使用了通过真空蒸镀获得的不同厚度的铜膜。报告回顾了铜薄膜在现代工业和科学中的应用趋势,并分析了适合研究铜薄膜的当前无损检测方法。简要介绍了沉积方法和测量薄膜电导率的软硬件组合。此外,还介绍了校准曲线,通过该曲线可以从涡流传感器的信号值还原薄膜的电导率值。选择砷化镓样品来构建校准曲线。这种化合物的电导率值与所获薄膜的计算指标相近,因此做出了这一决定。本文介绍了不同特性薄膜的测试结果,并显示了不同批次薄膜导电率的分布情况。对薄膜进行的一系列实际测量表明,沉积初始物质的质量与所得薄膜的特性之间存在着某种关系。根据同一批次中不同的电导率值,可以得出结论:不同薄膜的沉积质量存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信