A Novel Numerical Scheme for a Class of Singularly Perturbed Differential-Difference Equations with a Fixed Large Delay

IF 0.7 Q2 MATHEMATICS
E. Srinivas, K. Phaneendra
{"title":"A Novel Numerical Scheme for a Class of Singularly Perturbed Differential-Difference Equations with a Fixed Large Delay","authors":"E. Srinivas, K. Phaneendra","doi":"10.31489/2024m1/194-207","DOIUrl":null,"url":null,"abstract":"A trigonometric spline based computational technique is suggested for the numerical solution of layer behavior differential-difference equations with a fixed large delay. The continuity of the first order derivative of the trigonometric spline at the interior mesh point is used to develop the system of difference equations. With the help of singular perturbation theory, a fitting parameter is inserted into the difference scheme to minimize the error in the solution. The method is examined for convergence. We have also discussed the impact of shift or delay on the boundary layer. The maximum absolute errors in comparison to other approaches in the literature are tallied, and layer behavior is displayed in graphs, to demonstrate the feasibility of the suggested numerical method.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024m1/194-207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A trigonometric spline based computational technique is suggested for the numerical solution of layer behavior differential-difference equations with a fixed large delay. The continuity of the first order derivative of the trigonometric spline at the interior mesh point is used to develop the system of difference equations. With the help of singular perturbation theory, a fitting parameter is inserted into the difference scheme to minimize the error in the solution. The method is examined for convergence. We have also discussed the impact of shift or delay on the boundary layer. The maximum absolute errors in comparison to other approaches in the literature are tallied, and layer behavior is displayed in graphs, to demonstrate the feasibility of the suggested numerical method.
一类具有固定大延迟的奇异扰动差分方程的新型数值方案
提出了一种基于三角样条的计算技术,用于数值求解具有固定大延迟的层行为微分-差分方程。利用三角样条线在内部网格点的一阶导数的连续性来建立差分方程系统。在奇异扰动理论的帮助下,在差分方案中插入了一个拟合参数,以最小化求解中的误差。我们对该方法的收敛性进行了检验。我们还讨论了偏移或延迟对边界层的影响。我们统计了与文献中其他方法相比的最大绝对误差,并以图表形式显示了层行为,以证明所建议的数值方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信