Means of Cauchy’s difference type

IF 0.9 3区 数学 Q2 MATHEMATICS
Janusz Matkowski
{"title":"Means of Cauchy’s difference type","authors":"Janusz Matkowski","doi":"10.1007/s00010-024-01044-6","DOIUrl":null,"url":null,"abstract":"<div><p><i>k</i>-variable means which are the Cauchy differences of additive type generated by a real single variable function <i>f</i>, and denoted by <span>\\(C_{f,k}\\)</span>, are examined. It is shown that <span>\\(C_{f,k}\\)</span> is an increasing mean in <span>\\(\\left( 0,\\infty \\right) \\)</span> iff <i>f</i> is a convex solution of the (reflexivity) functional equation <span>\\(f\\left( kx\\right) -kf\\left( x\\right) =x\\)</span>, and a construction of a large class of such means is presented. The form of a unique homogeneous mean of the form <span>\\(C_{f,k}\\)</span> is given. As corollaries, the suitable results for the Cauchy differences of exponential, logarithmic and multiplicative types are obtained. It is shown that there exists a unique continuous and differentiable at 0 function <i>f</i> such that <span>\\(M\\left( x,y\\right) :=f\\left( x+y\\right) -f\\left( x\\right) f\\left( y\\right) \\)</span> is a bivariable premean in <span>\\(\\mathbb {R}\\)</span>, and its analyticity is proved. Finding the explicit form of <i>f</i> is one of the proposed open questions.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 1","pages":"89 - 105"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01044-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

k-variable means which are the Cauchy differences of additive type generated by a real single variable function f, and denoted by \(C_{f,k}\), are examined. It is shown that \(C_{f,k}\) is an increasing mean in \(\left( 0,\infty \right) \) iff f is a convex solution of the (reflexivity) functional equation \(f\left( kx\right) -kf\left( x\right) =x\), and a construction of a large class of such means is presented. The form of a unique homogeneous mean of the form \(C_{f,k}\) is given. As corollaries, the suitable results for the Cauchy differences of exponential, logarithmic and multiplicative types are obtained. It is shown that there exists a unique continuous and differentiable at 0 function f such that \(M\left( x,y\right) :=f\left( x+y\right) -f\left( x\right) f\left( y\right) \) is a bivariable premean in \(\mathbb {R}\), and its analyticity is proved. Finding the explicit form of f is one of the proposed open questions.

考奇差分类型平均值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信