Enhanced Strength–Ductility Synergy of Mg-Al-Sn-Ca Alloy via Composite Asymmetric Extrusion

Crystals Pub Date : 2024-03-30 DOI:10.3390/cryst14040323
Xiwen Chen, Yuxuan Li, Zhi-Gang Li, Chao Wang, Hai Deng
{"title":"Enhanced Strength–Ductility Synergy of Mg-Al-Sn-Ca Alloy via Composite Asymmetric Extrusion","authors":"Xiwen Chen, Yuxuan Li, Zhi-Gang Li, Chao Wang, Hai Deng","doi":"10.3390/cryst14040323","DOIUrl":null,"url":null,"abstract":"Fine-grain and weak-texture magnesium alloys are the long-term development targets of lightweight structural materials. In this study, a new composite asymmetric extrusion (CAE) is developed, which, coupling with an asymmetric die and an asymmetric billet, is proposed to improve the strength–ductility of the Mg-3.8Al-1.1Sn-0.4Ca alloy. The influence of the asymmetric billet on the microstructure and mechanical properties was investigated. The findings revealed that the asymmetric billet can induce greater plastic deformation, resulting in an increase in the cumulative strain and an improved nucleation rate. The CAE sheets exhibit fine grains (4.4 μm) and a weak tilted texture (7.57 mrd). Furthermore, the asymmetric billet results in the microstructure not forming a gradient microstructure under gradient strain along the transverse direction (TD) direction. The CAE sheets exhibited good mechanical properties, with a yield strength (YS) of 253 MPa, ultimate tensile strength (UTS) of 331 MPa, and elongation (EL) of 20%. This development shows promise in achieving high-efficiency, low-cost production of magnesium alloys.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"1 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14040323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-grain and weak-texture magnesium alloys are the long-term development targets of lightweight structural materials. In this study, a new composite asymmetric extrusion (CAE) is developed, which, coupling with an asymmetric die and an asymmetric billet, is proposed to improve the strength–ductility of the Mg-3.8Al-1.1Sn-0.4Ca alloy. The influence of the asymmetric billet on the microstructure and mechanical properties was investigated. The findings revealed that the asymmetric billet can induce greater plastic deformation, resulting in an increase in the cumulative strain and an improved nucleation rate. The CAE sheets exhibit fine grains (4.4 μm) and a weak tilted texture (7.57 mrd). Furthermore, the asymmetric billet results in the microstructure not forming a gradient microstructure under gradient strain along the transverse direction (TD) direction. The CAE sheets exhibited good mechanical properties, with a yield strength (YS) of 253 MPa, ultimate tensile strength (UTS) of 331 MPa, and elongation (EL) of 20%. This development shows promise in achieving high-efficiency, low-cost production of magnesium alloys.
通过非对称复合挤压增强镁铝锰钙合金的强度-延展性协同作用
细晶粒和弱质地镁合金是轻质结构材料的长期发展目标。本研究开发了一种新的复合非对称挤压(CAE)技术,该技术与非对称模具和非对称坯料相结合,可提高 Mg-3.8Al-1.1Sn-0.4Ca 合金的强度-电导率。研究了不对称坯料对微观结构和机械性能的影响。研究结果表明,不对称坯料可引起更大的塑性变形,从而增加累积应变并提高成核率。CAE 薄片呈现出细晶粒(4.4 μm)和弱倾斜纹理(7.57 mrd)。此外,不对称坯料导致微观结构在沿横向(TD)方向的梯度应变下没有形成梯度微观结构。CAE 板材具有良好的机械性能,屈服强度 (YS) 为 253 兆帕,极限拉伸强度 (UTS) 为 331 兆帕,伸长率 (EL) 为 20%。这一研发成果为实现镁合金的高效、低成本生产带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信