On Best Multiplier Approximation of k-Monotone by Trigonometric Polynomial

S. K. Al-Saidy, Hasan W. Maktoof, A. K. O. Mazeel, Baba Galadima Agaie
{"title":"On Best Multiplier Approximation of k-Monotone by Trigonometric Polynomial","authors":"S. K. Al-Saidy, Hasan W. Maktoof, A. K. O. Mazeel, Baba Galadima Agaie","doi":"10.23851/mjs.v35i1.1448","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to study the degree of the best multiplier approximation of monotone unbounded functions in L_(p,λ_n)-space on the closed interval [-π,π] by means of K-functional, which we represented with, K(f,L_(p,λ_n ),W_(p,λ_n)^1,W ̃_(p,λ_n)^1), defined by the W_(p,λ_n)^1 and W ̃_(p,λ_n)^1  that are referred to during this research. In addition, we have established a set of definitions, concepts and some useful lemmas that are needed in our work.","PeriodicalId":7867,"journal":{"name":"Al-Mustansiriyah Journal of Science","volume":"33 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v35i1.1448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this paper is to study the degree of the best multiplier approximation of monotone unbounded functions in L_(p,λ_n)-space on the closed interval [-π,π] by means of K-functional, which we represented with, K(f,L_(p,λ_n ),W_(p,λ_n)^1,W ̃_(p,λ_n)^1), defined by the W_(p,λ_n)^1 and W ̃_(p,λ_n)^1  that are referred to during this research. In addition, we have established a set of definitions, concepts and some useful lemmas that are needed in our work.
论三角多项式 k 单调性的最佳乘法近似值
本文的主要目标是研究 L_(p,λ_n)-space 中闭合区间 [-π、K(f,L_(p,λ_n ),W_(p,λ_n)^1,W ̃_(p,λ_n)^1)表示,由本研究中提到的 W_(p,λ_n)^1 和 W ̃_(p,λ_n)^1定义。此外,我们还建立了一套工作中所需的定义、概念和一些有用的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信