AN ENHANCED SHRINKAGE FUNCTION FOR DENOISING ECONOMIC TIME SERIES DATA USING WAVELET ANALYSIS

S. A. Othman, Kurdistan M. Omar
{"title":"AN ENHANCED SHRINKAGE FUNCTION FOR DENOISING ECONOMIC TIME SERIES DATA USING WAVELET ANALYSIS","authors":"S. A. Othman, Kurdistan M. Omar","doi":"10.25271/sjuoz.2024.12.1.1223","DOIUrl":null,"url":null,"abstract":"In the realm of economic (financial) time series analysis, accurate prediction holds paramount importance. However, these data often suffer from the presence of noise, particularly in highly random and non-stationary datasets like stock market data. Dealing with noisy data makes predicting noise-free economic models exceedingly challenging. This research paper introduces an innovative shrinkage (thresholding) function designed to improve the efficiency of wavelet shrinkage denoising in the context of financial time series data. The proposed function is constructed based on an arctangent model with adjustable parameters meticulously chosen to ensure the function maintains continuous differentiability. The application of this novel shrinkage function effectively reduces noise in stock data. Employing R program for data analysis and figure plotting, the performance of this approach is rigorously validated using closing price data from the Shanghai Composite Index, spanning the period from January 4, 2000 to August 28, 2023. The experimental results demonstrate that the proposed thresholding function outperforms classical shrinkage functions (hard, soft, and nonnegative garrote) in both continuous derivative property and denoising efficacy.","PeriodicalId":21627,"journal":{"name":"Science Journal of University of Zakho","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of University of Zakho","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25271/sjuoz.2024.12.1.1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of economic (financial) time series analysis, accurate prediction holds paramount importance. However, these data often suffer from the presence of noise, particularly in highly random and non-stationary datasets like stock market data. Dealing with noisy data makes predicting noise-free economic models exceedingly challenging. This research paper introduces an innovative shrinkage (thresholding) function designed to improve the efficiency of wavelet shrinkage denoising in the context of financial time series data. The proposed function is constructed based on an arctangent model with adjustable parameters meticulously chosen to ensure the function maintains continuous differentiability. The application of this novel shrinkage function effectively reduces noise in stock data. Employing R program for data analysis and figure plotting, the performance of this approach is rigorously validated using closing price data from the Shanghai Composite Index, spanning the period from January 4, 2000 to August 28, 2023. The experimental results demonstrate that the proposed thresholding function outperforms classical shrinkage functions (hard, soft, and nonnegative garrote) in both continuous derivative property and denoising efficacy.
利用小波分析对经济时间序列数据去噪的增强收缩函数
在经济(金融)时间序列分析领域,准确预测至关重要。然而,这些数据经常会受到噪声的影响,尤其是像股市数据这样高度随机和非平稳的数据集。处理噪声数据使得预测无噪声经济模型具有极大的挑战性。本研究论文介绍了一种创新的收缩(阈值)函数,旨在提高金融时间序列数据的小波收缩去噪效率。所提出的函数基于一个反正切模型,其可调参数经过精心选择,以确保函数保持连续可微分性。应用这种新颖的收缩函数可有效降低股票数据中的噪声。利用 R 程序进行数据分析和图表绘制,并使用 2000 年 1 月 4 日至 2023 年 8 月 28 日期间的上证综指收盘价数据对该方法的性能进行了严格验证。实验结果表明,所提出的阈值函数在连续导数特性和去噪效果方面均优于经典的收缩函数(硬、软和非负加罗法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
35
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信