Depression Detection of Users in Social Media X using IndoBERTweet

Muhammad Fadhel, Warih Maharani
{"title":"Depression Detection of Users in Social Media X using IndoBERTweet","authors":"Muhammad Fadhel, Warih Maharani","doi":"10.33395/sinkron.v9i2.13354","DOIUrl":null,"url":null,"abstract":"According to the Ministry of Home Affairs, the population of Indonesia stands at 273 million, Indonesia has approximately 167 million active subscribers to virtual entertainment platforms, including YouTube, Facebook, Instagram, and Twitter. The use of online entertainment is huge, particularly on Twitter, and has been associated with mental health implications, such as depression. This research objective is to do a comprehensive study about the IndoBertweet deep learning framework to investigate the prevalence of depression in social media, focusing on Twitter. Utilizing the DASS-42, the research estimates depression levels based on user interactions and reactions to tweets. The results of this research showed that the IndoBERTweet method achieved an accuracy rate of 82% in detecting depression using Twitter data. This research highlights the importance of intervention strategies to support the mental health of social media users, emphasizing the importance of proactive measures in addressing mental well-being issues in the digital space.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":"57 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v9i2.13354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the Ministry of Home Affairs, the population of Indonesia stands at 273 million, Indonesia has approximately 167 million active subscribers to virtual entertainment platforms, including YouTube, Facebook, Instagram, and Twitter. The use of online entertainment is huge, particularly on Twitter, and has been associated with mental health implications, such as depression. This research objective is to do a comprehensive study about the IndoBertweet deep learning framework to investigate the prevalence of depression in social media, focusing on Twitter. Utilizing the DASS-42, the research estimates depression levels based on user interactions and reactions to tweets. The results of this research showed that the IndoBERTweet method achieved an accuracy rate of 82% in detecting depression using Twitter data. This research highlights the importance of intervention strategies to support the mental health of social media users, emphasizing the importance of proactive measures in addressing mental well-being issues in the digital space.
使用 IndoBERTweet 在社交媒体 X 中检测用户抑郁情况
根据印尼内政部的数据,印尼人口为 2.73 亿,约有 1.67 亿活跃用户使用 YouTube、Facebook、Instagram 和 Twitter 等虚拟娱乐平台。在线娱乐的使用量非常大,尤其是在 Twitter 上,并且与抑郁症等心理健康问题有关。本研究旨在对 IndoBertweet 深度学习框架进行全面研究,以调查抑郁症在社交媒体中的流行情况,重点关注 Twitter。研究利用 DASS-42,根据用户对推文的互动和反应来估算抑郁水平。研究结果表明,IndoBERTweet 方法利用 Twitter 数据检测抑郁症的准确率达到了 82%。这项研究凸显了支持社交媒体用户心理健康的干预策略的重要性,强调了采取积极措施解决数字空间心理健康问题的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
204
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信