OPTYMALIZACJA DRZEWA DECYZYJNEGO OPARTA NA ALGORYTMIE GENETYCZNYM DO WYKRYWANIA DEMENCJI POPRZEZ ANALIZĘ MRI

Govada Anuradha, Harini Davu, Muthyalanaidu Karri
{"title":"OPTYMALIZACJA DRZEWA DECYZYJNEGO OPARTA NA ALGORYTMIE GENETYCZNYM DO WYKRYWANIA DEMENCJI POPRZEZ ANALIZĘ MRI","authors":"Govada Anuradha, Harini Davu, Muthyalanaidu Karri","doi":"10.35784/iapgos.5775","DOIUrl":null,"url":null,"abstract":"Dementia is a devastating neurological disorder that affects millions of people globally, causing progressive decline in cognitive function and daily living activities. Early and precise detection of dementia is critical for optimal dementia therapy and management however, the diagnosis of dementia is often challenging due to the complexity of the disease and the wide range of symptoms that patients may exhibit. Machine learning approaches are becoming progressively more prevalent in the realm of image processing, particularly for disease prediction. These algorithms can learn to recognize distinctive characteristics and patterns that are suggestive of specific diseases by analyzing images from multiple medical imaging modalities. This paper aims to develop and optimize a decision tree algorithm for dementia detection using the OASIS dataset, which comprises a large collection of MRI images and associated clinical data. This approach involves using a genetic algorithm to optimize the decision tree model for maximum accuracy and effectiveness. The ultimate goal of the paper is to develop an effective, non-invasive diagnostic tool for early and accurate detection of dementia. The GA-based decision tree, as proposed, exhibits strong performance compared to alternative models, boasting an impressive accuracy rate of 96.67% according to experimental results.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dementia is a devastating neurological disorder that affects millions of people globally, causing progressive decline in cognitive function and daily living activities. Early and precise detection of dementia is critical for optimal dementia therapy and management however, the diagnosis of dementia is often challenging due to the complexity of the disease and the wide range of symptoms that patients may exhibit. Machine learning approaches are becoming progressively more prevalent in the realm of image processing, particularly for disease prediction. These algorithms can learn to recognize distinctive characteristics and patterns that are suggestive of specific diseases by analyzing images from multiple medical imaging modalities. This paper aims to develop and optimize a decision tree algorithm for dementia detection using the OASIS dataset, which comprises a large collection of MRI images and associated clinical data. This approach involves using a genetic algorithm to optimize the decision tree model for maximum accuracy and effectiveness. The ultimate goal of the paper is to develop an effective, non-invasive diagnostic tool for early and accurate detection of dementia. The GA-based decision tree, as proposed, exhibits strong performance compared to alternative models, boasting an impressive accuracy rate of 96.67% according to experimental results.
基于遗传算法的决策树优化,通过核磁共振成像分析检测痴呆症
痴呆症是一种破坏性神经系统疾病,影响着全球数百万人,导致认知功能和日常生活活动能力逐渐下降。早期精确检测痴呆症对于痴呆症的最佳治疗和管理至关重要,然而,由于痴呆症的复杂性和患者可能表现出的各种症状,痴呆症的诊断往往具有挑战性。在图像处理领域,机器学习方法正变得越来越普遍,尤其是在疾病预测方面。这些算法可以通过分析多种医学成像模式的图像,学习识别提示特定疾病的明显特征和模式。本文旨在利用由大量核磁共振成像图像和相关临床数据组成的 OASIS 数据集,开发和优化用于痴呆症检测的决策树算法。这种方法包括使用遗传算法优化决策树模型,以获得最高的准确性和有效性。本文的最终目标是开发一种有效的无创诊断工具,用于早期准确检测痴呆症。与其他模型相比,本文提出的基于遗传算法的决策树表现出强劲的性能,实验结果显示其准确率高达 96.67%,令人印象深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信