Les Hotra, Oksana Boyko, Igor Helzhynskyy, H. Barylo, Pylyp Skoropad, Alla Ivanyshyn, Olena Basalkevych
{"title":"ROOT SURFACE TEMPERATURE MEASUREMENT DURING ROOT CANAL OBTURATION","authors":"Les Hotra, Oksana Boyko, Igor Helzhynskyy, H. Barylo, Pylyp Skoropad, Alla Ivanyshyn, Olena Basalkevych","doi":"10.35784/iapgos.5895","DOIUrl":null,"url":null,"abstract":"Prolonged exposure to elevated temperatures exceeding 47°C, which can occur during root canal obturation, can cause damage of both dental and bone tissues. In order to study the temperature distribution on the surface of the tooth root a temperature measuring device with cold-junction compensation is proposed. For in vitro measurement of the temperature distribution on the surface of the tooth, 8 thermocouples placed in direct contact with the cementum of the tooth were used. In order to eliminate the cold-junction temperature variations, the temperature equilibration device and RTD were used. The suggested linear approximation for the thermocouples' conversion function provides a nonlinearity relative error of less than 0.05% for K-type thermocouples and 0.07% for J-type thermocouples over the temperature range from 20 to 60°C.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged exposure to elevated temperatures exceeding 47°C, which can occur during root canal obturation, can cause damage of both dental and bone tissues. In order to study the temperature distribution on the surface of the tooth root a temperature measuring device with cold-junction compensation is proposed. For in vitro measurement of the temperature distribution on the surface of the tooth, 8 thermocouples placed in direct contact with the cementum of the tooth were used. In order to eliminate the cold-junction temperature variations, the temperature equilibration device and RTD were used. The suggested linear approximation for the thermocouples' conversion function provides a nonlinearity relative error of less than 0.05% for K-type thermocouples and 0.07% for J-type thermocouples over the temperature range from 20 to 60°C.