{"title":"Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass","authors":"Numan Luthfi, Takashi Fukushima, Xiulun Wang, Kenji Takisawa","doi":"10.3390/resources13040049","DOIUrl":null,"url":null,"abstract":"Hydrothermal carbonization (HTC) is a widely used process for converting biomass with a wide range of moisture. Biomass selection poses challenges in producing hydrochar with desired properties because of their different constituents. In this study, we investigated the fuel properties of hydrochar of sorghum bagasse (SB) and microalgae (MA) at different severity factors (SFs = 4.08, 4.43, 5.56, 5.90, and 6.63) and their potential as alternatives to coal. The results show that during HTC, both biomasses underwent dehydration, in addition to the noticeable decarboxylation of MA. Fixed carbon increasingly developed in the SB hydrochar, in contrast to the MA hydrochar, which formed volatile hydrocarbon; thus, the MA hydrochar released heat values of 26.7–36.2 MJ·kg−1, which was higher than that of SB at 19.7–28.0 MJ·kg−1. However, owing to the stable hydrocarbons, SB hydrochar is assumed to combust more stably and ignite more decently, as indicated by its fuel ratio (0.83), approaching 0.9–1.5. Moreover, the greater number of solids recovered in SB after carbonization makes its conversion more techno-commercially viable, retaining 1.8 times more of the original energy. Conflating these fuel properties reveals that SB hydrochar (SF = 6.63) is a promising alternative to steam coal, and MA hydrochar is an attractive alternative to both steam (SF = 4.08–5.90) and coking coals (SF = 6.63). Concisely, both biomasses are practically promising as value-added hydrochars, but only SB can be developed beyond the current HTC severity owing to the thermal stability of its hydrocarbons.","PeriodicalId":37723,"journal":{"name":"Resources","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/resources13040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrothermal carbonization (HTC) is a widely used process for converting biomass with a wide range of moisture. Biomass selection poses challenges in producing hydrochar with desired properties because of their different constituents. In this study, we investigated the fuel properties of hydrochar of sorghum bagasse (SB) and microalgae (MA) at different severity factors (SFs = 4.08, 4.43, 5.56, 5.90, and 6.63) and their potential as alternatives to coal. The results show that during HTC, both biomasses underwent dehydration, in addition to the noticeable decarboxylation of MA. Fixed carbon increasingly developed in the SB hydrochar, in contrast to the MA hydrochar, which formed volatile hydrocarbon; thus, the MA hydrochar released heat values of 26.7–36.2 MJ·kg−1, which was higher than that of SB at 19.7–28.0 MJ·kg−1. However, owing to the stable hydrocarbons, SB hydrochar is assumed to combust more stably and ignite more decently, as indicated by its fuel ratio (0.83), approaching 0.9–1.5. Moreover, the greater number of solids recovered in SB after carbonization makes its conversion more techno-commercially viable, retaining 1.8 times more of the original energy. Conflating these fuel properties reveals that SB hydrochar (SF = 6.63) is a promising alternative to steam coal, and MA hydrochar is an attractive alternative to both steam (SF = 4.08–5.90) and coking coals (SF = 6.63). Concisely, both biomasses are practically promising as value-added hydrochars, but only SB can be developed beyond the current HTC severity owing to the thermal stability of its hydrocarbons.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.