{"title":"Estimating cost of pothole repair from digital images using Stereo Vision and Artificial Neural Network","authors":"Edoghogho Olaye, Eriksson Owraigbo, Nosa Bello","doi":"10.58190/ijamec.2024.77","DOIUrl":null,"url":null,"abstract":"A significant amount of road maintenance cost goes into pothole repairs. The primary cost factors related to potholes are their size and depth, as larger and thicker potholes incur higher repair costs. However, existing methods for estimating pothole repair in developing countries rely on manual size measurements, which is time consuming, labor intensive, subjective and can lead to poor estimation of repair cost. This paper presents a system that can automatically determine the size of potholes from digital images and estimate the cost of repair. \nIn this study, the stereo vision method was used to automatically estimate the depths of potholes from digital camera images. A feed-forward backward propagation Artificial Neural Network (ANN) was trained using pothole images acquired using mobile phones. The predicted depths and sizes of the potholes were then used to estimate the quantity of materials required to fill the potholes and subsequently, the cumulative cost of repair. Marking out and manual size measurements were performed for twenty randomly selected potholes in the Ugbowo Campus of the University of Benin, Nigeria. These measurements were compared against the estimated sizes of potholes predicted by the ANN model. A system was developed to automatically compute these material costs and considering other cost components such as transportation, labor, and equipment.\nResults obtained showed that the mean errors for depth, width and height estimates were 3.403%, 3.789% and 5.2617% respectively. Consequently, the developed system correctly estimated the cost of repair of the potholes considered in this study. A significant contribution of the paper is the speed and convenience of acquiring pothole data using a mobile phones without the need for on spot assessment of potholes or use of relatively more expensive stereoscopic camera setup.\n","PeriodicalId":496101,"journal":{"name":"International Journal of Applied Methods in Electronics and Computers","volume":"35 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Methods in Electronics and Computers","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.58190/ijamec.2024.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A significant amount of road maintenance cost goes into pothole repairs. The primary cost factors related to potholes are their size and depth, as larger and thicker potholes incur higher repair costs. However, existing methods for estimating pothole repair in developing countries rely on manual size measurements, which is time consuming, labor intensive, subjective and can lead to poor estimation of repair cost. This paper presents a system that can automatically determine the size of potholes from digital images and estimate the cost of repair.
In this study, the stereo vision method was used to automatically estimate the depths of potholes from digital camera images. A feed-forward backward propagation Artificial Neural Network (ANN) was trained using pothole images acquired using mobile phones. The predicted depths and sizes of the potholes were then used to estimate the quantity of materials required to fill the potholes and subsequently, the cumulative cost of repair. Marking out and manual size measurements were performed for twenty randomly selected potholes in the Ugbowo Campus of the University of Benin, Nigeria. These measurements were compared against the estimated sizes of potholes predicted by the ANN model. A system was developed to automatically compute these material costs and considering other cost components such as transportation, labor, and equipment.
Results obtained showed that the mean errors for depth, width and height estimates were 3.403%, 3.789% and 5.2617% respectively. Consequently, the developed system correctly estimated the cost of repair of the potholes considered in this study. A significant contribution of the paper is the speed and convenience of acquiring pothole data using a mobile phones without the need for on spot assessment of potholes or use of relatively more expensive stereoscopic camera setup.