Emission and performance investigation of mango seed oil biodiesel supplied with n-pentanol and n-hexanol additives and optimization of fuel blends using modified deep neural network

S. Rami Reddy, S. K. Sarangi
{"title":"Emission and performance investigation of mango seed oil biodiesel supplied with n-pentanol and n-hexanol additives and optimization of fuel blends using modified deep neural network","authors":"S. Rami Reddy, S. K. Sarangi","doi":"10.1515/ijcre-2023-0183","DOIUrl":null,"url":null,"abstract":"\n In this study, the emission and performance characteristics of single-cylinder diesel engines were tested using various biodiesel blends prepared by mixing diesel with mango seed oil biodiesel (MSOB). Furthermore, the effect of n-amyl and n-hexanol alcohol additions on the performance and emission results of manufactured biodiesel blends is investigated and compared with diesel fuel. On the other hand, a hybrid deep neural network (DNN) based on the manta ray foraging optimization (MRFO) method is developed to forecast ideal biodiesel blends in order to reduce emissions from diesel engines while improving performance. The optimal brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) for this study were 32.3916 % for 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel and 0.0453 kg/kWh for 75 % diesel + 20 % MSOB + 5 % n-amyl fuel, respectively. The optimal emissions from the test engine were 0.1034 % CO from 60 % diesel + 20 % MSOB + 20 % n-hexanol and 28.886 ppm HC from 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel. The optimal smoke and NO\n x\n levels are achieved with a blend of 60 % diesel, 20 % MSOB, 5 % n-amyl, and 5 % n-hexane. Moreover, the developed DNN-MRFO achieved 0.9979, 0.9992 and 0.9975 overall regression coefficients during training, validation and testing. The root mean square error (RMSE) of DNN-MRFO also ranges from 0.019 to 0.032.","PeriodicalId":502324,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"66 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the emission and performance characteristics of single-cylinder diesel engines were tested using various biodiesel blends prepared by mixing diesel with mango seed oil biodiesel (MSOB). Furthermore, the effect of n-amyl and n-hexanol alcohol additions on the performance and emission results of manufactured biodiesel blends is investigated and compared with diesel fuel. On the other hand, a hybrid deep neural network (DNN) based on the manta ray foraging optimization (MRFO) method is developed to forecast ideal biodiesel blends in order to reduce emissions from diesel engines while improving performance. The optimal brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) for this study were 32.3916 % for 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel and 0.0453 kg/kWh for 75 % diesel + 20 % MSOB + 5 % n-amyl fuel, respectively. The optimal emissions from the test engine were 0.1034 % CO from 60 % diesel + 20 % MSOB + 20 % n-hexanol and 28.886 ppm HC from 75 % diesel + 20 % MSOB + 5 % n-hexanol fuel. The optimal smoke and NO x levels are achieved with a blend of 60 % diesel, 20 % MSOB, 5 % n-amyl, and 5 % n-hexane. Moreover, the developed DNN-MRFO achieved 0.9979, 0.9992 and 0.9975 overall regression coefficients during training, validation and testing. The root mean square error (RMSE) of DNN-MRFO also ranges from 0.019 to 0.032.
使用正戊醇和正己醇添加剂的芒果籽油生物柴油的排放和性能调查,以及使用改良深度神经网络优化燃料混合物
在这项研究中,使用柴油与芒果籽油生物柴油(MSOB)混合制备的各种生物柴油混合物对单缸柴油发动机的排放和性能特征进行了测试。此外,还研究了正戊醇和正己醇添加量对生物柴油混合物性能和排放结果的影响,并与柴油进行了比较。另一方面,基于鳐鱼觅食优化(MRFO)方法开发了一种混合深度神经网络(DNN),用于预测理想的生物柴油混合物,以便在提高性能的同时减少柴油发动机的排放。在这项研究中,75 % 柴油 + 20 % MSOB + 5 % 正己醇燃料的最佳制动热效率(BTE)和制动比油耗(BSFC)分别为 32.3916 %,75 % 柴油 + 20 % MSOB + 5 % 正戊醇燃料的最佳制动热效率和制动比油耗分别为 0.0453 kg/kWh。测试发动机的最佳排放为:60 % 柴油 + 20 % MSOB + 20 % 正己醇燃料的 CO 排放量为 0.1034 %,75 % 柴油 + 20 % MSOB + 5 % 正己醇燃料的 HC 排放量为 28.886 ppm。60 % 柴油、20 % MSOB、5 % 正戊基和 5 % 正己烷的混合燃料可达到最佳烟度和氮氧化物水平。此外,所开发的 DNN-MRFO 在训练、验证和测试期间的总体回归系数分别为 0.9979、0.9992 和 0.9975。DNN-MRFO 的均方根误差(RMSE)也在 0.019 至 0.032 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信