Unmanned aerial vehicle path planning in a 3D environment using a hybrid algorithm

Q2 Mathematics
A. A. Kareem, M. J. Mohamed, B. K. Oleiwi
{"title":"Unmanned aerial vehicle path planning in a 3D environment using a hybrid algorithm","authors":"A. A. Kareem, M. J. Mohamed, B. K. Oleiwi","doi":"10.11591/eei.v13i2.6020","DOIUrl":null,"url":null,"abstract":"The optimal unmanned aerial vehicle (UAV) path planning using bio-inspired algorithms requires high computation and low convergence in a complex 3D environment. To solve this problem, a hybrid A*-FPA algorithm was proposed that combines the A* algorithm with a flower pollination algorithm (FPA). The main idea of this algorithm is to balance the high speed of the A* exploration ability with the FPA exploitation ability to find an optimal 3D UAV path. At first, the algorithm starts by finding the locally optimal path based on a grid map, and the result is a set of path nodes. The algorithm will select three discovered nodes and set the FPA's initial population. Finally, the FPA is applied to obtain the optimal path. The proposed algorithm's performance was compared with the A*, FPA, genetic algorithm (GA), and partical swarm optimization (PSO) algorithms, where the comparison is done based on four factors: the best path, mean path, standard deviation, and worst path length. The simulation results showed that the proposed algorithm outperformed all previously mentioned algorithms in finding the optimal path in all scenarios, significantly improving the best path length and mean path length of 79.3% and 147.8%, respectively.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal unmanned aerial vehicle (UAV) path planning using bio-inspired algorithms requires high computation and low convergence in a complex 3D environment. To solve this problem, a hybrid A*-FPA algorithm was proposed that combines the A* algorithm with a flower pollination algorithm (FPA). The main idea of this algorithm is to balance the high speed of the A* exploration ability with the FPA exploitation ability to find an optimal 3D UAV path. At first, the algorithm starts by finding the locally optimal path based on a grid map, and the result is a set of path nodes. The algorithm will select three discovered nodes and set the FPA's initial population. Finally, the FPA is applied to obtain the optimal path. The proposed algorithm's performance was compared with the A*, FPA, genetic algorithm (GA), and partical swarm optimization (PSO) algorithms, where the comparison is done based on four factors: the best path, mean path, standard deviation, and worst path length. The simulation results showed that the proposed algorithm outperformed all previously mentioned algorithms in finding the optimal path in all scenarios, significantly improving the best path length and mean path length of 79.3% and 147.8%, respectively.
使用混合算法进行三维环境中的无人飞行器路径规划
在复杂的三维环境中,使用生物启发算法进行无人机(UAV)最优路径规划需要较高的计算量和较低的收敛性。为解决这一问题,人们提出了一种 A*-FPA 混合算法,它将 A* 算法与花朵授粉算法(FPA)相结合。该算法的主要思想是平衡 A* 的高速探索能力和 FPA 的开发能力,从而找到最佳的三维无人机路径。首先,该算法根据网格图寻找局部最优路径,结果是一组路径节点。算法将选择三个已发现的节点,并设置 FPA 的初始种群。最后,应用 FPA 获得最佳路径。将所提出算法的性能与 A*、FPA、遗传算法(GA)和部分群优化(PSO)算法进行了比较,比较基于四个因素:最佳路径、平均路径、标准偏差和最差路径长度。仿真结果表明,所提出的算法在所有情况下找到最优路径的性能都优于之前提到的所有算法,最佳路径长度和平均路径长度分别显著提高了 79.3% 和 147.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信