Dynamic responses analysis of submerged floating tunnel under impact load

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE
Brodogradnja Pub Date : 2024-04-01 DOI:10.21278/brod75208
Ming Wang, D. Qiao, Xiangbo Zhou, Guoqiang Tang, Lin Lu, Jinping Ou
{"title":"Dynamic responses analysis of submerged floating tunnel under impact load","authors":"Ming Wang, D. Qiao, Xiangbo Zhou, Guoqiang Tang, Lin Lu, Jinping Ou","doi":"10.21278/brod75208","DOIUrl":null,"url":null,"abstract":"Submerged floating tunnel (SFT) may be subjected to sudden impact loads such as submarine and shipwreck. Besides the local damage caused by impact, the overall transient dynamic response may also affect its driving safety. Based on the dynamic impact finite element software, the full-length model, and the locally truncated accurate model with solid element of the SFT are established respectively. By applying different spring stiffness constraints on the boundary of the truncated model, its first three modes are consistent with the full-length model, thus their dynamic characteristics are basically the same. The truncated model is further used to simulate the impact of a massive object on the SFT under different impact velocities, impact mass, impact angles and impact positions. The velocity and mass of the impact object have positive influences on the peak contact force, the displacement amplitude of the tube and the length of the damaged area. When the impact angle is perpendicular to the SFT tube, the contact force, displacement amplitude and the damaged area are the largest. The change of the impact position has little effect on the contact force and the damage area, but it will affect the distribution of displacement amplitude.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Submerged floating tunnel (SFT) may be subjected to sudden impact loads such as submarine and shipwreck. Besides the local damage caused by impact, the overall transient dynamic response may also affect its driving safety. Based on the dynamic impact finite element software, the full-length model, and the locally truncated accurate model with solid element of the SFT are established respectively. By applying different spring stiffness constraints on the boundary of the truncated model, its first three modes are consistent with the full-length model, thus their dynamic characteristics are basically the same. The truncated model is further used to simulate the impact of a massive object on the SFT under different impact velocities, impact mass, impact angles and impact positions. The velocity and mass of the impact object have positive influences on the peak contact force, the displacement amplitude of the tube and the length of the damaged area. When the impact angle is perpendicular to the SFT tube, the contact force, displacement amplitude and the damaged area are the largest. The change of the impact position has little effect on the contact force and the damage area, but it will affect the distribution of displacement amplitude.
水下浮动隧道在冲击载荷下的动态响应分析
水下浮动隧道(Submerged floating tunnel,SFT)可能会受到潜艇和沉船等突然冲击载荷的影响。除了冲击造成的局部破坏,整体瞬态动态响应也可能影响其行驶安全。基于动态冲击有限元软件,分别建立了海底隧道的全长模型和局部截断的精确实体模型。通过对截断模型的边界施加不同的弹簧刚度约束,其前三个模态与全长模型一致,因此它们的动态特性基本相同。截断模型被进一步用于模拟大块物体在不同撞击速度、撞击质量、撞击角度和撞击位置下对 SFT 的撞击。撞击物体的速度和质量对接触力峰值、管子位移幅度和受损区域长度有正向影响。当撞击角度垂直于 SFT 管时,接触力、位移幅度和损坏面积最大。冲击位置的改变对接触力和损坏面积影响不大,但会影响位移振幅的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信