{"title":"An optimistic-pessimistic game cross-efficiency method based on a Gibbs entropy model for ranking decision making units","authors":"Noppakun Thongmual, Chanchai Laoha, Narong Wichapa","doi":"10.11591/eei.v13i2.5747","DOIUrl":null,"url":null,"abstract":"The game cross-efficiency method, a commonly utilized approach for ranking decision-making units in tie-breaking scenarios, is based on secondary goals. However, in certain data envelopment analysis ranking problems, the classical game cross-efficiency method may fail to differentiate all decision-making units effectively. To address this limitation, it is prudent to explore the development of a new method that can enhance the ranking performance of the classical game cross-efficiency approach. In this study, we propose a novel Gibbs entropy linear programming model that integrates both optimistic and pessimistic perspectives of the classical game cross-efficiency method for data envelopment analysis ranking problems. To validate the reliability and utility of our proposed method, we present three examples: the six nursing homes problem, numerical example 2, and an application involving twenty Thai provinces with cash crop data. The reliability of the proposed method is assessed using Spearman’s correlation coefficient (rs) on the numerical examples. The results demonstrate that the rs values for both the proposed method and the classical game crossefficiency method, specifically for the six nursing homes problem, numerical example 2, and the application involving twenty Thai provinces, are determined to be rs=0.998, 0.998, and 0.986 respectively.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"18 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.5747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The game cross-efficiency method, a commonly utilized approach for ranking decision-making units in tie-breaking scenarios, is based on secondary goals. However, in certain data envelopment analysis ranking problems, the classical game cross-efficiency method may fail to differentiate all decision-making units effectively. To address this limitation, it is prudent to explore the development of a new method that can enhance the ranking performance of the classical game cross-efficiency approach. In this study, we propose a novel Gibbs entropy linear programming model that integrates both optimistic and pessimistic perspectives of the classical game cross-efficiency method for data envelopment analysis ranking problems. To validate the reliability and utility of our proposed method, we present three examples: the six nursing homes problem, numerical example 2, and an application involving twenty Thai provinces with cash crop data. The reliability of the proposed method is assessed using Spearman’s correlation coefficient (rs) on the numerical examples. The results demonstrate that the rs values for both the proposed method and the classical game crossefficiency method, specifically for the six nursing homes problem, numerical example 2, and the application involving twenty Thai provinces, are determined to be rs=0.998, 0.998, and 0.986 respectively.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]