Influence of temperature, state of charge and state of health on the thermal parameters of lithium-ion cells: Exploring thermal behavior and enabling fast-charging

Luca Tendera , Hendrik Pegel , Carlos Gonzalez , Dominik Wycisk , Alexander Fill , Kai Peter Birke
{"title":"Influence of temperature, state of charge and state of health on the thermal parameters of lithium-ion cells: Exploring thermal behavior and enabling fast-charging","authors":"Luca Tendera ,&nbsp;Hendrik Pegel ,&nbsp;Carlos Gonzalez ,&nbsp;Dominik Wycisk ,&nbsp;Alexander Fill ,&nbsp;Kai Peter Birke","doi":"10.1016/j.fub.2024.100001","DOIUrl":null,"url":null,"abstract":"<div><p>The precise input of thermal parameters is essential for thermal simulation. Although constant thermal parameters are commonly used for parametrizing thermal modeling frameworks, extensive measurements indicate a significant dependence of thermal parameters on temperature, SOC and SOH. Therefore, this work summarizes experimental data and integrates determined operating point dependencies into a validated thermal-electrical-electrochemical modeling framework. Exploring the effect of variable thermal parameters, detailed effects on fast-charging and corresponding charging times are assessed.</p><p>It is found that the strong reduction in through-plane thermal conductivity due to aging can notably increase thermal inhomogeneity. Thus, heat dissipation is reduced and the thermal management has to be revised to prevent an increase in charging time of up to 3%. However, the operating point-dependent through-plane thermal conductivity has no significant effect on fast-charging for the analyzed pristine cylindrical lithium-ion cell. Furthermore, a temperature-dependent specific heat capacity definition considerably affects the thermal behavior of lithium-ion cells at extreme temperatures. While enabling a faster heating at low temperatures, a temperature-related current derating at high temperatures is delayed. Thus, a variable thermal parameter definition can lead to an increase in fast-charging capability of up to 3% due to the more precise modeling of the physical behavior of the cell.</p></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"1 ","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950264024000017/pdfft?md5=9e9fc4915a5f835d6ccde23bd1e82ecd&pid=1-s2.0-S2950264024000017-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264024000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The precise input of thermal parameters is essential for thermal simulation. Although constant thermal parameters are commonly used for parametrizing thermal modeling frameworks, extensive measurements indicate a significant dependence of thermal parameters on temperature, SOC and SOH. Therefore, this work summarizes experimental data and integrates determined operating point dependencies into a validated thermal-electrical-electrochemical modeling framework. Exploring the effect of variable thermal parameters, detailed effects on fast-charging and corresponding charging times are assessed.

It is found that the strong reduction in through-plane thermal conductivity due to aging can notably increase thermal inhomogeneity. Thus, heat dissipation is reduced and the thermal management has to be revised to prevent an increase in charging time of up to 3%. However, the operating point-dependent through-plane thermal conductivity has no significant effect on fast-charging for the analyzed pristine cylindrical lithium-ion cell. Furthermore, a temperature-dependent specific heat capacity definition considerably affects the thermal behavior of lithium-ion cells at extreme temperatures. While enabling a faster heating at low temperatures, a temperature-related current derating at high temperatures is delayed. Thus, a variable thermal parameter definition can lead to an increase in fast-charging capability of up to 3% due to the more precise modeling of the physical behavior of the cell.

温度、充电状态和健康状态对锂离子电池热参数的影响:探索热行为并实现快速充电
精确输入热参数对热模拟至关重要。虽然恒定的热参数通常用于热建模框架的参数化,但大量的测量结果表明,热参数与温度、SOC 和 SOH 有很大关系。因此,这项工作总结了实验数据,并将确定的工作点依赖关系整合到经过验证的热-电-电化学建模框架中。在探索可变热参数的影响时,对快速充电和相应充电时间的详细影响进行了评估。研究发现,老化导致的通面热导率大幅下降会显著增加热不均匀性。因此,散热减少,热管理必须进行调整,以防止充电时间增加达 3%。然而,对于所分析的原始圆柱形锂离子电池,与工作点相关的通面热导率对快速充电没有显著影响。此外,与温度相关的比热容定义在很大程度上影响了锂离子电池在极端温度下的热行为。虽然在低温下加热速度更快,但在高温下与温度相关的电流降额却会延迟。因此,通过对电池物理行为进行更精确的建模,可变热参数定义可将快速充电能力提高 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信