Single Mn atom modulated molecular oxygen activation over TiO2 for photocatalytic formaldehyde oxidation

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiufan Liu , Cancan Ling , Xingdong Chen , Huayu Gu , Guangming Zhan , Chuan Liang , Kai Wei , Xinhe Wu , Kai Wang , Guohong Wang
{"title":"Single Mn atom modulated molecular oxygen activation over TiO2 for photocatalytic formaldehyde oxidation","authors":"Xiufan Liu ,&nbsp;Cancan Ling ,&nbsp;Xingdong Chen ,&nbsp;Huayu Gu ,&nbsp;Guangming Zhan ,&nbsp;Chuan Liang ,&nbsp;Kai Wei ,&nbsp;Xinhe Wu ,&nbsp;Kai Wang ,&nbsp;Guohong Wang","doi":"10.1016/j.jcis.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>In single-atom catalysts, the atomically dispersed metal sites are pivotal for oxygen molecule activation. We hypothesize that dispersing single Mn atoms on TiO<sub>2</sub> nanosheets may improve the photocatalytic oxidation of formaldehyde (HCHO) in the gas phase under ambient conditions. Density function theory (DFT) and experimental experiments were carried out to single Mn atoms not only improved the transfer of localized electrons and photogenerated electrons but also enhanced the activation/dissociation of O<sub>2</sub> to generate monoatomic oxygen ions (O<sup>-</sup>) as the final reactive oxygen species (ROS). In photocatalytic experiments, Mn/TiO<sub>2</sub> photocatalyst removed 100 % of HCHO at a low concentration of 7.6 ppm, and reaching excellent mineralization efficiency of over 99.6 %. According to the proposed reaction mechanism, O<sub>2</sub> spontaneously adsorbs onto the Mn/TiO<sub>2</sub> surface, forming two adsorbed O<sup>-</sup> after electron donation into the π<sub>2p</sub>* antibonding orbitals of O<sub>2</sub>. The adsorbed O<sup>-</sup> then reacts with gaseous HCHO to produce the key intermediate dioxymethylene (DOM), finally fulfilling a more favorable oxidation process on the Mn/TiO<sub>2</sub> surface. This research illustrates the key role of O<sup>-</sup> in HCHO oxidation and paves the way for practical HCHO removal using TiO<sub>2</sub>-based photocatalysts.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"666 ","pages":"Pages 12-21"},"PeriodicalIF":9.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724007197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In single-atom catalysts, the atomically dispersed metal sites are pivotal for oxygen molecule activation. We hypothesize that dispersing single Mn atoms on TiO2 nanosheets may improve the photocatalytic oxidation of formaldehyde (HCHO) in the gas phase under ambient conditions. Density function theory (DFT) and experimental experiments were carried out to single Mn atoms not only improved the transfer of localized electrons and photogenerated electrons but also enhanced the activation/dissociation of O2 to generate monoatomic oxygen ions (O-) as the final reactive oxygen species (ROS). In photocatalytic experiments, Mn/TiO2 photocatalyst removed 100 % of HCHO at a low concentration of 7.6 ppm, and reaching excellent mineralization efficiency of over 99.6 %. According to the proposed reaction mechanism, O2 spontaneously adsorbs onto the Mn/TiO2 surface, forming two adsorbed O- after electron donation into the π2p* antibonding orbitals of O2. The adsorbed O- then reacts with gaseous HCHO to produce the key intermediate dioxymethylene (DOM), finally fulfilling a more favorable oxidation process on the Mn/TiO2 surface. This research illustrates the key role of O- in HCHO oxidation and paves the way for practical HCHO removal using TiO2-based photocatalysts.

Abstract Image

二氧化钛上的单锰原子调制分子氧活化用于光催化甲醛氧化
在单原子催化剂中,原子分散的金属位点是氧分子活化的关键。我们假设,在二氧化钛纳米片上分散单个锰原子可改善环境条件下气相中甲醛(HCHO)的光催化氧化。密度函数理论(DFT)和实验证明,单个锰原子不仅能改善局部电子和光生电子的转移,还能增强 O2 的活化/解离,生成单原子氧离子(O-)作为最终的活性氧物种(ROS)。在光催化实验中,Mn/TiO2 光催化剂可在 7.6 ppm 的低浓度下 100%去除 HCHO,矿化效率高达 99.6% 以上。根据所提出的反应机理,O2 自发吸附在 Mn/TiO2 表面,在向 O2 的 π2p* 反键轨道提供电子后形成两个吸附 O-。然后,吸附的 O- 与气态 HCHO 反应生成关键的中间体二氧亚甲基(DOM),最终在 Mn/TiO2 表面完成更有利的氧化过程。这项研究说明了 O- 在 HCHO 氧化过程中的关键作用,并为利用基于 TiO2 的光催化剂去除 HCHO 的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信