Hermite regression estimation in noisy convolution model

Pub Date : 2024-03-26 DOI:10.1016/j.jspi.2024.106168
Ousmane Sacko
{"title":"Hermite regression estimation in noisy convolution model","authors":"Ousmane Sacko","doi":"10.1016/j.jspi.2024.106168","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following regression model: <span><math><mrow><mi>y</mi><mrow><mo>(</mo><mi>k</mi><mi>T</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>⋆</mo><mi>g</mi><mrow><mo>(</mo><mi>k</mi><mi>T</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mi>T</mi></math></span> fixed, where <span><math><mi>g</mi></math></span> is known and <span><math><mi>f</mi></math></span> is the unknown function to be estimated. The errors <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>n</mi><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> are independent and identically distributed centered with finite known variance. Two adaptive estimation methods for <span><math><mi>f</mi></math></span> are considered by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If <span><math><mi>f</mi></math></span> belongs to Sobolev regularity spaces, we derive rates of convergence. Adaptive procedures to select the relevant parameter inspired by the Goldenshluger and Lepski method are proposed and we prove that the resulting estimators satisfy oracle inequalities for sub-Gaussian <span><math><mi>ɛ</mi></math></span>’s. Finally, we illustrate numerically these approaches.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following regression model: y(kT/n)=fg(kT/n)+ɛk,k=n,,n1, T fixed, where g is known and f is the unknown function to be estimated. The errors (ɛk)nkn1 are independent and identically distributed centered with finite known variance. Two adaptive estimation methods for f are considered by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If f belongs to Sobolev regularity spaces, we derive rates of convergence. Adaptive procedures to select the relevant parameter inspired by the Goldenshluger and Lepski method are proposed and we prove that the resulting estimators satisfy oracle inequalities for sub-Gaussian ɛ’s. Finally, we illustrate numerically these approaches.

分享
查看原文
噪声卷积模型中的赫米特回归估计
本文考虑以下回归模型:y(kT/n)=f⋆g(kT/n)+ɛk,k=-n,...,n-1, T 固定,其中 g 为已知函数,f 为待估计的未知函数。误差 (ɛk)-n≤k≤n-1 是独立且同分布的中心误差,具有有限的已知方差。利用赫米特基的特性,我们考虑了 f 的两种自适应估计方法。我们研究了每种估计方法的二次风险。如果 f 属于 Sobolev 正则空间,我们将得出收敛率。受 Goldenshluger 和 Lepski 方法的启发,我们提出了选择相关参数的自适应程序,并证明所得到的估计器满足亚高斯ɛ的oracle 不等式。最后,我们用数字说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信