Subordination results for a class of multi-term fractional Jeffreys-type equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Emilia Bazhlekova
{"title":"Subordination results for a class of multi-term fractional Jeffreys-type equations","authors":"Emilia Bazhlekova","doi":"10.1007/s13540-024-00275-3","DOIUrl":null,"url":null,"abstract":"<p>Jeffreys equation and its fractional generalizations provide extensions of the classical diffusive laws of Fourier and Fick for heat and particle transport. In this work, a class of multi-term time-fractional generalizations of the classical Jeffreys equation is studied. Restrictions on the parameters are derived, which ensure that the fundamental solution to the one-dimensional Cauchy problem is a spatial probability density function evolving in time. The studied equations are recast as Volterra integral equations with kernels represented in terms of multinomial Mittag-Leffler functions. Applying operator-theoretic approach, we establish subordination results with respect to appropriate evolution equations of integer order, depending on the considered range of parameters. Analyticity of the corresponding solution operator is also discussed. The main tools in the proofs are Laplace transform and the Bernstein functions’ technique, especially, some properties of the sets of real powers of complete Bernstein functions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00275-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Jeffreys equation and its fractional generalizations provide extensions of the classical diffusive laws of Fourier and Fick for heat and particle transport. In this work, a class of multi-term time-fractional generalizations of the classical Jeffreys equation is studied. Restrictions on the parameters are derived, which ensure that the fundamental solution to the one-dimensional Cauchy problem is a spatial probability density function evolving in time. The studied equations are recast as Volterra integral equations with kernels represented in terms of multinomial Mittag-Leffler functions. Applying operator-theoretic approach, we establish subordination results with respect to appropriate evolution equations of integer order, depending on the considered range of parameters. Analyticity of the corresponding solution operator is also discussed. The main tools in the proofs are Laplace transform and the Bernstein functions’ technique, especially, some properties of the sets of real powers of complete Bernstein functions.

一类多项式分式杰弗里斯型方程的服从结果
杰弗里斯方程及其分式广义是傅里叶和菲克经典扩散定律在热量和粒子输运方面的扩展。在这项工作中,研究了一类经典杰弗里斯方程的多期时间分数广义。推导出了对参数的限制,从而确保一维考奇问题的基本解是一个随时间演化的空间概率密度函数。所研究的方程被重构为 Volterra 积分方程,其核以多项式 Mittag-Leffler 函数表示。应用算子理论方法,我们根据所考虑的参数范围,建立了与适当的整阶演化方程相关的从属性结果。我们还讨论了相应解算子的解析性。证明的主要工具是拉普拉斯变换和伯恩斯坦函数技术,特别是完整伯恩斯坦函数实幂集的一些属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信