{"title":"Does administration of hydroxychloroquine/amiodarone affect the efficacy of enzyme replacement therapy for Fabry mice?","authors":"Takahiro Tsukimura , Koki Saito , Tomoko Shiga , Yasuhiro Ogawa , Hitoshi Sakuraba , Tadayasu Togawa","doi":"10.1016/j.ymgmr.2024.101079","DOIUrl":null,"url":null,"abstract":"<div><p>As a standard therapy for Fabry disease, enzyme replacement therapy (ERT) with recombinant human α-galactosidase A (α-Gal) has been successfully used, and the instructions for this drug state that “it should not be co-administrated with cationic amphiphilic drugs such as hydroxychloroquine (HCQ) and amiodarone (AMI), since these drugs have the potential to inhibit intracellular α-Gal activity”. However, there would be cases in which HCQ or AMI is required for patients with Fabry disease, considering their medical efficacy and application.</p><p>Thus, we examined the impact of HCQ/AMI on recombinant human α-Gal by <em>in vitro</em>, cellular, and animal experiments. The results revealed that HCQ/AMI affected the enzyme activity of α-Gal incorporated into cultured fibroblasts from a Fabry mouse when the cells were cultured in medium containing these drugs and the enzyme, although their direct inhibitory effect on the enzyme is not strong. These lysosomotropic drugs may be trapped and concentrated in lysosomes, followed by inhibition of α-Gal.</p><p>On the other hand, no reduction of α-Gal activity incorporated into the organs and tissues, or acceleration of glycoshingolipid accumulation was observed in Fabry mice co-administered with HCQ/AMI and the enzyme, compared with in the case of usual ERT. As HCQ/AMI administered are catabolized in the liver, these drugs possibly do not affect ERT for Fabry mice, different from in the case of cultured cells in an environment isolated from the surroundings.</p></div>","PeriodicalId":18814,"journal":{"name":"Molecular Genetics and Metabolism Reports","volume":"39 ","pages":"Article 101079"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214426924000326/pdfft?md5=78e0dfe3027f98ed2768fa315734a20a&pid=1-s2.0-S2214426924000326-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Metabolism Reports","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214426924000326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
As a standard therapy for Fabry disease, enzyme replacement therapy (ERT) with recombinant human α-galactosidase A (α-Gal) has been successfully used, and the instructions for this drug state that “it should not be co-administrated with cationic amphiphilic drugs such as hydroxychloroquine (HCQ) and amiodarone (AMI), since these drugs have the potential to inhibit intracellular α-Gal activity”. However, there would be cases in which HCQ or AMI is required for patients with Fabry disease, considering their medical efficacy and application.
Thus, we examined the impact of HCQ/AMI on recombinant human α-Gal by in vitro, cellular, and animal experiments. The results revealed that HCQ/AMI affected the enzyme activity of α-Gal incorporated into cultured fibroblasts from a Fabry mouse when the cells were cultured in medium containing these drugs and the enzyme, although their direct inhibitory effect on the enzyme is not strong. These lysosomotropic drugs may be trapped and concentrated in lysosomes, followed by inhibition of α-Gal.
On the other hand, no reduction of α-Gal activity incorporated into the organs and tissues, or acceleration of glycoshingolipid accumulation was observed in Fabry mice co-administered with HCQ/AMI and the enzyme, compared with in the case of usual ERT. As HCQ/AMI administered are catabolized in the liver, these drugs possibly do not affect ERT for Fabry mice, different from in the case of cultured cells in an environment isolated from the surroundings.
期刊介绍:
Molecular Genetics and Metabolism Reports is an open access journal that publishes molecular and metabolic reports describing investigations that use the tools of biochemistry and molecular biology for studies of normal and diseased states. In addition to original research articles, sequence reports, brief communication reports and letters to the editor are considered.