Flashes and Rainbows in Tournaments

IF 1 2区 数学 Q1 MATHEMATICS
António Girão, Freddie Illingworth, Lukas Michel, Michael Savery, Alex Scott
{"title":"Flashes and Rainbows in Tournaments","authors":"António Girão, Freddie Illingworth, Lukas Michel, Michael Savery, Alex Scott","doi":"10.1007/s00493-024-00090-7","DOIUrl":null,"url":null,"abstract":"<p>Colour the edges of the complete graph with vertex set <span>\\({\\{1, 2, \\dotsc , n\\}}\\)</span> with an arbitrary number of colours. What is the smallest integer <i>f</i>(<i>l</i>, <i>k</i>) such that if <span>\\(n &gt; f(l,k)\\)</span> then there must exist a monotone monochromatic path of length <i>l</i> or a monotone rainbow path of length <i>k</i>? Lefmann, Rödl, and Thomas conjectured in 1992 that <span>\\(f(l, k) = l^{k - 1}\\)</span> and proved this for <span>\\(l \\ge (3 k)^{2 k}\\)</span>. We prove the conjecture for <span>\\(l \\ge k^3 (\\log k)^{1 + o(1)}\\)</span> and establish the general upper bound <span>\\(f(l, k) \\le k (\\log k)^{1 + o(1)} \\cdot l^{k - 1}\\)</span>. This reduces the gap between the best lower and upper bounds from exponential to polynomial in <i>k</i>. We also generalise some of these results to the tournament setting.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00090-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Colour the edges of the complete graph with vertex set \({\{1, 2, \dotsc , n\}}\) with an arbitrary number of colours. What is the smallest integer f(lk) such that if \(n > f(l,k)\) then there must exist a monotone monochromatic path of length l or a monotone rainbow path of length k? Lefmann, Rödl, and Thomas conjectured in 1992 that \(f(l, k) = l^{k - 1}\) and proved this for \(l \ge (3 k)^{2 k}\). We prove the conjecture for \(l \ge k^3 (\log k)^{1 + o(1)}\) and establish the general upper bound \(f(l, k) \le k (\log k)^{1 + o(1)} \cdot l^{k - 1}\). This reduces the gap between the best lower and upper bounds from exponential to polynomial in k. We also generalise some of these results to the tournament setting.

比赛中的闪光和彩虹
用任意数量的颜色给顶点集 \({\{1, 2, \dotsc, n\}\}) 的完整图的边着色。如果 \(n > f(l,k)\) 那么一定存在长度为 l 的单调单色路径或长度为 k 的单调彩虹路径,那么 f(l, k) 的最小整数是多少?Lefmann、Rödl 和 Thomas 在 1992 年猜想 \(f(l, k) = l^{k - 1}\ 并证明了 \(l \ge (3 k)^{2 k}\ 的这一猜想。)我们证明了 \(l\ge k^3 (\log k)^{1 + o(1)}\) 的猜想,并建立了一般上界 \(f(l, k) \le k (\log k)^{1 + o(1)}\cdot l^{k - 1}\).这将最佳下界和上界之间的差距从指数级缩小到 k 的多项式级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信